148 research outputs found

    The Nuclearization of Biology Is a Threat to Health and Security

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/78142/1/bsp.2009.0047.pd

    Biodefense Research: A Win-Win Challenge

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/63273/1/bsp.2008.1114.pd

    Fate and expression of simian virus 40 DNA after introduction into murine cells under nonselective conditions

    Full text link
    When SV40 infects mouse cells, it does not replicate but instead causes neoplastic transformation of a small percentage of the cells. It is unknown, however, what happens to the virus in those cells that do not become transformed. We introduced SV40 into mouse cells by nonselective means, either by cotransfection of SV40 DNA with a selectable marker or by random cloning of SV40-infected cells. We analyzed the fate of viral DNA sequences, expression of T antigens, and transformation properties of these cells. We found that, upon infection, viral DNA integration occurs at a frequency that is at least 10-fold higher than the frequency of transformation. The majority of these cells are not transformed due to lack of expression of T antigen. One cell line which expresses a truncated T antigen is not transformed. We have mapped the viral sequences in the genome of these cells and find that integration in the large T intron is probably responsible for the defect. Lack of transformation can therefore be attributed to both cellular and viral factors, namely, introduction of viral DNA into cells that are resistant to transformation or integration of viral DNA in such a way that T antigen expression is prohibited.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/26708/1/0000258.pd

    Kaposiā€™s Sarcoma-Associated Herpesvirus Increases PD-L1 and Proinflammatory Cytokine Expression in Human Monocytes

    Get PDF
    ABSTRACT Kaposiā€™s sarcoma-associated herpesvirus (KSHV) is associated with the human malignancy Kaposiā€™s sarcoma and the lymphoproliferative disorders primary effusion lymphoma and multicentric Castlemanā€™s disease. KSHV establishes lytic infection of monocytes in vivo , which may represent an important cellular reservoir during KS disease progression. KS tumors consist of latently infected endothelial cells; however, lytic phase gene products are important for KS onset. Early KS lesion progression is driven by proinflammatory cytokines supplied by immune cell infiltrates including T cells and monocytes. KSHV-infected monocytes may supply the lytic viral products and the inflammatory milieu conducive to KS tumor progression. To establish successful infection, KSHV extensively modulates the host immune system. KSHV antigens activate both innate and adaptive immune responses including KSHV-specific T cells, but lifelong infection is still established. Programmed death ligand 1 (PD-L1) is a prosurvival cell surface protein that suppresses T-cell-mediated killing. PD-L1 is variably present on various tumor cells and is a targetable marker for cancer treatment. We show that KSHV infection of human monocytes increases PD-L1 expression and transcription in a dose-dependent manner. We also saw evidence of lytic gene expression in the KSHV-infected monocytes. Intact KSHV is needed for full PD-L1 response in human monocytes. KSHV induces a general proinflammatory cytokine milieu including interleukins 1Ī±, 1Ī², and 6, which have been implicated in early KS lesion progression. KSHV-mediated PD-L1 increase may represent a novel mechanism of KSHV-mediated immune modulation to allow for virus survival and eventually malignant progression. IMPORTANCE KSHV is the etiologic agent of Kaposiā€™s sarcoma and the lymphoproliferative disorders primary effusion lymphoma and multicentric Castlemanā€™s disease. Programmed death ligand 1 (PD-L1) is an immunosuppressive cell surface marker that inhibits T cell activation. We report that KSHV infection of primary human monocytes upregulates PD-L1 transcription and protein expression. Analysis of the cytokine and chemokine milieu following KSHV infection of monocytes revealed that KSHV induces interleukins 1Ī±, 1Ī², and 6, all of which have been implicated in KS development. Our work has identified another potential immune evasion strategy for KSHV and a potential target for immunotherapy of KSHV-derived disease

    An SV40 transformation revertant due to a host mutation: Isolation and complementation analysis

    Full text link
    We have isolated an SV40 transformation revertant cell line, CLi L, by selection for normal cells whose growth is inhibited under low serum conditions. This line expresses a single, wild-type copy of large T antigen, yet is not transformed. It is not retransformable by transfection of SV40 DNA or infection with a recombinant retrovirus encoding large T antigen. Resistance to transformation therefore appears to be due to a cellular mutation. Fusion of CL1 L cells to normal 3T3 cells or SV40-transformed cells results in somatic cell hybrids that are transformed, indicating that resistance is recessive. In addition, fusion of CL1L cells to another SV40 transformation-resistant line, A27, results in transformed hybrids, indicating the existence of discrete complementation groups with respect to SV40 transformation.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/30140/1/0000517.pd

    Field Research Is Essential to Counter Virological Threats

    Get PDF
    The interface between humans and wildlife is changing and, with it, the potential for pathogen introduction into humans has increased. Avian influenza is a prominent example, with an ongoing outbreak showing the unprecedented expansion of both geographic and host ranges. Research in the field is essential to understand this and other zoonotic threats. Only by monitoring dynamic viral populations and defining their biology in situ can we gather the information needed to ensure effective pandemic preparation.</p

    Adaptations of Avian Flu Virus Are a Cause for Concern

    Get PDF
    We are in the midst of a revolutionary period in the life sciences. Technological capabilities have dramatically expanded, we have a much improved understanding of the complex biology of selected microorganisms, and we have a much improved ability to manipulate microbial genomes. With this has come unprecedented potential for better control of infectious diseases and significant societal benefit. However, there is also a growing risk that the same science will be deliberately misused and that the consequences could be catastrophic. Efforts to describe or define life-sciences research of particular concern have focused on the possibility that knowledge or products derived from such research, or new technologies, could be directly misapplied with a sufficiently broad scope to affect national or global security. Research that might greatly enhance the harm caused by microbial pathogens has been of special concern (1ā€“3). Until now, these efforts have suffered from a lack of specificity and a paucity of concrete examples of ā€œdual use research of concernā€ (3). Dual use is defined as research that could be used for good or bad purposes. We are now confronted by a potent, real-world example

    Characterization of highly frequent epitope-specific CD45RA(+)/CCR7(+/- )T lymphocyte responses against p53-binding domains of the human polyomavirus BK large tumor antigen in HLA-A*0201+ BKV-seropositive donors

    Get PDF
    Human polyomavirus BK (BKV) has been implicated in oncogenic transformation. Its ability to replicate is determined by the binding of its large tumor antigen (LTag) to products of tumor-suppressor genes regulating cell cycle, as specifically p53. We investigated CD8+ T immune responses to BKV LTag portions involved in p53 binding in HLA-A*0201+ BKV LTag experienced individuals. Peptides selected from either p53-binding region (LTag(351ā€“450 )and LTag(533ā€“626)) by current algorithms and capacity to bind HLA-A*0201 molecule were used to stimulate CD8+ T responses, as assessed by IFN-Ī³ gene expression ex vivo and detected by cytotoxicity assays following in vitro culture. We observed epitope-specific immune responses in all HLA-A*0201+ BKV LTag experienced individuals tested. At least one epitope, LTag(579ā€“587); LLLIWFRPV, was naturally processed in non professional antigen presenting cells and induced cytotoxic responses with CTL precursor frequencies in the order of 1/20'000. Antigen specific CD8+ T cells were only detectable in the CD45RA+ subset, in both CCR7+ and CCR7- subpopulations. These data indicate that widespread cellular immune responses against epitopes within BKV LTag-p53 binding regions exist and question their roles in immunosurveillance against tumors possibly associated with BKV infection
    • ā€¦
    corecore