47 research outputs found
Characterization of reagent pencils for deposition of reagents onto paper-based microfluidic devices
Reagent pencils allow for solvent-free deposition of reagents onto paper-based microfluidic devices. The pencils are portable, easy to use, extend the shelf-life of reagents, and offer a platform for customizing diagnostic devices at the point of care. In this work, reagent pencils were characterized by measuring the wear resistance of pencil cores made from polyethylene glycols (PEGs) with different molecular weights and incorporating various concentrations of three different reagents using a standard pin abrasion test, as well as by measuring the efficiency of reagent delivery from the pencils to the test zones of paper-based microfluidic devices using absorption spectroscopy and digital image colorimetry. The molecular weight of the PEG, concentration of the reagent, and the molecular weight of the reagent were all found to have an inverse correlation with the wear of the pencil cores, but the amount of reagent delivered to the test zone of a device correlated most strongly with the concentration of the reagent in the pencil core. Up to 49% of the total reagent deposited on a device with a pencil was released into the test zone, compared to 58% for reagents deposited from a solution. The results suggest that reagent pencils can be prepared for a variety of reagents using PEGs with molecular weights in the range of 2000 to 6000 g/mol
HNO Binding in a Heme Protein: Structures, Spectroscopic Properties, and Stabilities
HNO can interact with numerous heme proteins, but atomic level structures are largely unknown. In this work, various structural models for the first stable HNO heme protein complex, MbHNO (Mb, myoglobin), were examined by quantum chemical calculations. This investigation led to the discovery of two novel structural models that can excellently reproduce numerous experimental spectroscopic properties. They are also the first atomic level structures that can account for the experimentally observed high stabilities. These two models involve two distal His conformations as reported previously for MbCNR and MbNO. However, a unique dual hydrogen bonding feature of the HNO binding was not reported before in heme protein complexes with other small molecules such as CO, NO, and O2. These results shall facilitate investigations of HNO bindings in other heme proteins
Recommended from our members
A novel heme and peroxide-dependent tryptophan-tyrosine cross-link in a mutant of cytochrome c peroxidase
The crystal structure of a cytochrome c peroxidase mutant where the distal catalytic His52 is converted to Tyr reveals that the tyrosine side-chain forms a covalent bond with the indole ring nitrogen atom of Trp51. We hypothesize that this novel bond results from peroxide activation by the heme iron followed by oxidation of Trp51 and Tyr52. This hypothesis has been tested by incorporation of a redox-inactive Zn-protoporphyrin into the protein, and the resulting crystal structure shows the absence of a Trp51-Tyr52 cross-link. Instead, the Tyr52 side-chain orients away from the heme active-site pocket, which requires a substantial rearrangement of residues 72-80 and 134-144. Additional experiments where hemecontaining crystals of the mutant were treated with peroxide support our hypothesis that this novel Trp-Tyr cross-link is a peroxide-dependent process mediated by the heme iron. (C) 2003 Elsevier Science Ltd. All rights reserved
Synthesis, structure, and biological activity of ferrocenyl carbohydrate conjugates.
Seven ferrocenyl carbohydrate conjugates were synthesized. Coupling reactions of monosaccharide derivatives with ferrocene carbonyl chloride produced {6-N-(methyl 2,3,4-tri-O-acetyl-6-amino-6-deoxy-alpha-D-glucopyranoside)}-1-ferrocene carboxamide (3), {1-O-(2,3,4,6-tetra-O-benzyl-D-glucopyranose)}-1-ferrocene carboxylate (4), and {6-O-(1,2,3,4-tetra-O-acetyl-beta-D-glucopyranose)}-1-ferrocene carboxylate (5). Similarly, 1,1'-bis(carbonyl chloride)ferrocene was coupled with the appropriate sugars to produce the disubstituted analogues bis{6-N-(methyl 2,3,4-tri-O-acetyl-6-amino-6-deoxy-alpha-D-glucopyranoside)}-1,1'-ferrocene carboxamide (8), bis{1-O-(2,3,4,6-tetra-O-benzyl-D-glucopyranose)}-1,1'-ferrocene carboxylate (9), and bis{6-O-(1,2,3,4-tetra-O-acetyl-beta-D-glucopyranose)}-1,1'-ferrocene carboxylate (10). {6-N-(Methyl-6-amino-6-deoxy-alpha-D-glucopyranoside)}-1-ferrocene carboxamide monohydrate (12) was synthesized via amide coupling of an activated ferrocenyl ester with the corresponding carbohydrate. All compounds were characterized by elemental analysis, 1H NMR spectroscopy, and mass spectrometry. X-ray crystallography confirmed the solid-state structure of three ferrocenyl carbohydrate conjugates: 2-N-(1,3,4,6-tetra-O-acetyl-2-amino-2-deoxy-D-glucopyranose)-1-ferrocene carboxamide (1), 1-S-(2,3,4,6-tetra-O-acetyl-1-deoxy-1-thio-D-glucopyranose)-1-ferrocene carboxylate (2), and 12. The above compounds, along with bis{2-N-(1,3,4,6-tetra-O-acetyl-2-amino-2-deoxy-D-glucopyranose)}-1,1'-ferrocene carboxamide (6), bis{1-S-(2,3,4,6-tetra-O-acetyl-1-deoxy-1-thio-D-glucopyranose)}-1,1'-ferrocene carboxylate (7), and 2-N-(2-amino-2-deoxy-D-glucopyranose)-1-ferrocene carboxamide (11) were examined for cytotoxicity in cell lines (L1210 and HTB-129) and for antimalarial activity in Plasmodium falciparum strains (D10, 3D7, and K1, a chloroquine-resistant strain). In general, the compounds were nontoxic in the human cell line tested (HTB-129), and compounds 4, 7, and 9 showed moderate antimalarial activity in one or more of the P. falciparum strains