1 research outputs found

    A Portable Multi-Modal Cushion for Continuous Monitoring of a Driver’s Vital Signs

    No full text
    With higher levels of automation in vehicles, the need for robust driver monitoring systems increases, since it must be ensured that the driver can intervene at any moment. Drowsiness, stress and alcohol are still the main sources of driver distraction. However, physiological problems such as heart attacks and strokes also exhibit a significant risk for driver safety, especially with respect to the ageing population. In this paper, a portable cushion with four sensor units with multiple measurement modalities is presented. Capacitive electrocardiography, reflective photophlethysmography, magnetic induction measurement and seismocardiography are performed with the embedded sensors. The device can monitor the heart and respiratory rates of a vehicle driver. The promising results of the first proof-of-concept study with twenty participants in a driving simulator not only demonstrate the accuracy of the heart (above 70% of medical-grade heart rate estimations according to IEC 60601-2-27) and respiratory rate measurements (around 30% with errors below 2 BPM), but also that the cushion might be useful to monitor morphological changes in the capacitive electrocardiogram in some cases. The measurements can potentially be used to detect drowsiness and stress and thus the fitness of the driver, since heart rate variability and breathing rate variability can be captured. They are also useful for the early prediction of cardiovascular diseases, one of the main reasons for premature death. The data are publicly available in the UnoVis dataset
    corecore