4 research outputs found

    Diagnostic Instrument for Limb Apraxia : Short Version (DILA-S)

    No full text
    Das DILA-S ist ein neues Diagnostikinstrument zur Untersuchung von Gliedmaßen-Apraxie. Mit Hilfe der klassischen Testverfahren Imitation von Handstellungen und Pantomime von Werkzeuggebrauch kann das Vorliegen einer Gliedmaßen-Apraxie geprüft werden. Zusätzlich werden in diesem Testverfahren Aufgaben zur tatsächlichen Nutzung von unbekannten und bekannten Werkzeugen eingeführt. Hiermit soll der Einfluss der Apraxie auf das tägliche Leben der Patienten anschaulich dargestellt und untersucht werden. Mit Hilfe einer Gruppe von 82 gesunden Personen wurden Normwerte für jeden einzelnen Test erstellt, sodass verschiedene Subtypen der Gliedmaßen-Apraxie geprüft werden können.publishe

    Using an upper extremity exoskeleton for semi-autonomous exercise during inpatient neurological rehabilitation- a pilot study

    No full text
    Abstract Background Motor deficits are the most common symptoms after stroke. There is some evidence that intensity and amount of exercises influence the degree of improvement of functions within the first 6 months after the injury. The purpose of this pilot study was to evaluate the feasibility and acceptance of semi-autonomous exercises with an upper extremity exoskeleton in addition to an inpatient rehabilitation program. In addition, changes of motor functions were examined. Methods Ten stroke patients with a severe upper extremity paresis were included. They were offered to perform a semi-autonomous training with a gravity-supported, computer-enhanced device (Armeo®Spring, Hocoma AG) six times per week for 4 weeks. Feasibility was evaluated by weekly structured interviews with patients and supervisors. Motor functions were assessed before and after the training period using the Wolf Motor Function Test (WMFT). The Wilcoxon Signed Rank Test was used for assessing pre-post differences. The Pearson correlation co-efficient was used for correlating the number of completed sessions with the change in motor function. Acceptance of the device and the level of satisfaction with the training were determined by a questionnaire based on visual analogue scales. Results Neither patients nor supervisors reported side effects. However, one patient had to be excluded from analysis because of transportation difficulties from the ward to the treatment facility. Therefore, analysis was based on nine patients. On average, 13.2 (55%) sessions were realized. WMFT results showed significant improvements of proximal arm functions. The number of sessions correlated with the degree of shoulder force improvement. Patients rated the exercises to be motivating, and enjoyable and would continue using the Armeo®Spring at home if they had the opportunity. Conclusion Using an upper extremity exoskeleton for semi-autonomous training in an inpatient setting is feasible without side effects and is positively rated by the patients. It might further support the recovery of upper extremity function. Trial registration The trial was retrospectively registered. Registration number ISRCTN42633681

    Effects of a single mental chronometry training session in subacute stroke patients – a randomized controlled trial

    No full text
    BACKGROUND: Motor imagery training might be helpful in stroke rehabilitation. This study explored if a single session of motor imagery (MI) training induces performance changes in mental chronometry (MC), motor execution, or changes of motor excitability. METHODS: Subacute stroke patients (n = 33) participated in two training sessions. The order was randomized. One training consisted of a mental chronometry task, the other training was a hand identification task, each lasting 30 min. Before and after the training session, the Box and Block Test (BBT) was fully executed and also performed as a mental version which served as a measure of MC. A subgroup analysis based on the presence of sensory deficits was performed. Patients were allocated to three groups (no sensory deficits, moderate sensory deficits, severe sensory deficits). Motor excitability was measured by transcranial magnetic stimulation (TMS) pre and post training. Amplitudes of motor evoked potentials at rest and during pre-innervation as well as the duration of cortical silent period were measured in the affected and the non-affected hand. RESULTS: Pre-post differences of MC showed an improved MC after the MI training, whereas MC was worse after the hand identification training. Motor execution of the BBT was significantly improved after mental chronometry training but not after hand identification task training. Patients with severe sensory deficits performed significantly inferior in BBT execution and MC abilities prior to the training session compared to patients without sensory deficits or with moderate sensory deficits. However, pre-post differences of MC were similar in the 3 groups. TMS results were not different between pre and post training but showed significant differences between affected and unaffected side. CONCLUSION: Even a single training session can modulate MC abilities and BBT motor execution in a task-specific way. Severe sensory deficits are associated with poorer motor performance and poorer MC ability, but do not have a negative impact on training-associated changes of mental chronometry. Studies with longer treatment periods should explore if the observed changes can further be expanded

    Reliability, validity, and clinical feasibility of a rapid and objective assessment of post-stroke deficits in hand proprioception

    No full text
    Abstract Background Proprioceptive function can be affected after neurological injuries such as stroke. Severe and persistent proprioceptive impairments may be associated with a poor functional recovery after stroke. To better understand their role in the recovery process, and to improve diagnostics, prognostics, and the design of therapeutic interventions, it is essential to quantify proprioceptive deficits accurately and sensitively. However, current clinical assessments lack sensitivity due to ordinal scales and suffer from poor reliability and ceiling effects. Robotic technology offers new possibilities to address some of these limitations. Nevertheless, it is important to investigate the psychometric and clinimetric properties of technology-assisted assessments. Methods We present an automated robot-assisted assessment of proprioception at the level of the metacarpophalangeal joint, and evaluate its reliability, validity, and clinical feasibility in a study with 23 participants with stroke and an age-matched group of 29 neurologically intact controls. The assessment uses a two-alternative forced choice paradigm and an adaptive sampling procedure to identify objectively the difference threshold of angular joint position. Results Results revealed a good reliability (ICC(2,1) = 0.73) for assessing proprioception of the impaired hand of participants with stroke. Assessments showed similar task execution characteristics (e.g., number of trials and duration per trial) between participants with stroke and controls and a short administration time of approximately 12 min. A difference in proprioceptive function could be found between participants with a right hemisphere stroke and control subjects (p<0.001). Furthermore, we observed larger proprioceptive deficits in participants with a right hemisphere stroke compared to a left hemisphere stroke (p=0.028), despite the exclusion of participants with neglect. No meaningful correlation could be established with clinical scales for different modalities of somatosensation. We hypothesize that this is due to their low resolution and ceiling effects. Conclusions This study has demonstrated the assessment’s applicability in the impaired population and promising integration into clinical routine. In conclusion, the proposed assessment has the potential to become a powerful tool to investigate proprioceptive deficits in longitudinal studies as well as to inform and adjust sensorimotor rehabilitation to the patient’s deficits
    corecore