547 research outputs found
Boundary completion is automatic and dissociable from shape discrimination
Normal visual perception readily overcomes suboptimal or degraded viewing conditions through perceptual filling-in processes, enhancing object recognition and discrimination abilities. This study used visual evoked potential (VEP) recordings in conjunction with electrical neuroimaging analyses to determine the spatiotemporal brain dynamics of boundary completion and shape discrimination processes in healthy humans performing the so-called "thin/fat" discrimination task (Ringach and Shapley, 1996) with stimuli producing illusory contours. First, results suggest that boundary completion processes occur independent of subjects' accuracy on the discrimination task. Modulation of the VEP to the presence versus absence of illusory contours [the IC effect (Murray et al., 2002)] was indistinguishable in terms of response magnitude and scalp topography over the 124-186 ms poststimulus period, regardless of whether task performance was correct. This suggests that failure on this discrimination task is not primarily a consequence of failed boundary completion. Second, the electrophysiological correlates of thin/fat shape discrimination processes are temporally dissociable from those of boundary completion, occurring during a substantially later phase of processing (approximately 330-406 ms). The earlier IC effect was unaffected by whether the perceived contour produced a thin or fat shape. In contrast, later time periods of the VEP modulated according to perceived shape only in the case of stimuli producing illusory contours, but not for control stimuli for which performance was at near-chance levels. Collectively, these data provide further support for a multistage model of object processing under degraded viewing conditions
Excitation thresholds of field-aligned irregularities and associated ionospheric hysteresis at very high latitudes observed using SPEAR-induced HF radar backscatter
On 10 October 2006 the SPEAR high power radar facility was operated in a power-stepping mode where both CUTLASS radars were detecting backscatter from the SPEAR-induced field-aligned irregularities (FAIs). The effective radiated power of SPEAR was varied from 1–10 MW. The aim of the experiment was to investigate the power thresholds for excitation (<I>P<sub>t</sub></I>) and collapse (<I>P<sub>c</sub></I>) of artificially-induced FAIs in the ionosphere over Svalbard. It was demonstrated that FAI could be excited by a SPEAR ERP of only 1 MW, representing only 1/30th of SPEAR's total capability, and that once created the irregularities could be maintained for even lower powers. The experiment also demonstrated that the very high latitude ionosphere exhibits hysteresis, where the down-going part of the power cycle provided a higher density of irregularities than for the equivalent part of the up-going cycle. Although this second result is similar to that observed previously by CUTLASS in conjunction with the Tromsø heater, the same is not true for the equivalent incoherent scatter measurements. The EISCAT Svalbard Radar (ESR) failed to detect any hysteresis in the plasma parameters over Svalbard in stark contract with the measurements made using the Tromsø UHF
Status of the CRESST Dark Matter Search
The CRESST experiment aims for a detection of dark matter in the form of
WIMPs. These particles are expected to scatter elastically off the nuclei of a
target material, thereby depositing energy on the recoiling nucleus. CRESST
uses scintillating CaWO4 crystals as such a target. The energy deposited by an
interacting particle is primarily converted to phonons which are detected by
transition edge sensors. In addition, a small fraction of the interaction
energy is emitted from the crystals in the form of scintillation light which is
measured in coincidence with the phonon signal by a separate cryogenic light
detector for each target crystal. The ratio of light to phonon energy permits
the discrimination between the nuclear recoils expected from WIMPs and events
from radioactive backgrounds which primarily lead to electron recoils. CRESST
has shown the success of this method in a commissioning run in 2007 and, since
then, further investigated possibilities for an even better suppression of
backgrounds. Here, we report on a new class of background events observed in
the course of this work. The consequences of this observation are discussed and
we present the current status of the experiment.Comment: Proceedings of the 13th International Workshop on Low Temperature
Detectors, 4 pages, 3 figure
MESSENGER Observations of a Flux-Transfer-Event Shower at Mercury
Analysis of MESSENGER magnetic field observations taken in the southern lobe of Mercury's magnetotail and the adjacent magnetosheath on 11 April 2011 indicates that a total of 163 flux transfer events (FTEs) occurred within a 25 min interval. Each FTE had a duration of ∼2-3 s and was separated in time from the next by ∼8-10 s. A range of values have been reported at Earth, with mean values near ∼1-2 min and ∼8 min, respectively. We term these intervals of quasiperiodic flux transfer events "FTE showers." The northward and sunward orientation of the interplanetary magnetic field during this shower strongly suggests that the FTEs observed during this event formed just tailward of Mercury's southern magnetic cusp. The point of origin for the shower was confirmed with the Cooling model of FTE motion. Modeling of the individual FTE-type flux ropes in the magnetosheath indicates that these flux ropes had elliptical cross sections, a mean semimajor axis of 0.15RM (where RM is Mercury's radius, or 2440 km), and a mean axial magnetic flux of 1.25 MWb. The lobe magnetic field was relatively constant until the onset of the FTE shower, but thereafter the field magnitude decreased steadily until the spacecraft crossed the magnetopause. This decrease in magnetic field intensity is frequently observed during FTE showers. Such a decrease may be due to the diamagnetism of the new magnetosheath plasma being injected into the tail by the FTEs
Composite CaWO4 Detectors for the CRESST-II Experiment
CRESST-II, standing for Cryogenic Rare Events Search with Superconducting
Thermometers phase II, is an experiment searching for Dark Matter. In the LNGS
facility in Gran Sasso, Italy, a cryogenic detector setup is operated in order
to detect WIMPs by elastic scattering off nuclei, generating phononic lattice
excitations and scintillation light. The thermometers used in the experiment
consist of a tungsten thin-film structure evaporated onto the CaWO4 absorber
crystal. The process of evaporation causes a decrease in the scintillation
light output. This, together with the need of a big-scale detector production
for the upcoming EURECA experiment lead to investigations for producing
thermometers on smaller crystals which are glued onto the absorber crystal. In
our Run 31 we tested composite detectors for the first time in the Gran Sasso
setup. They seem to produce higher light yields as hoped and could provide an
additional time based discrimination mechanism for low light yield clamp
events.Comment: Proceedings of the Thirteenth International Workshop on Low
Temperature Detectors 4 pages, 9 figure
Clinical outcome and prognostic factors for central neurocytoma: twenty year institutional experience
Central neurocytomas are uncommon intraventricular neoplasms whose optimal management remains controversial due to their rarity. We assessed outcomes for a historical cohort of neurocytoma patients and evaluated effects of tumor atypia, size, resection extent, and adjuvant radiotherapy. Progression-free survival (PFS) was measured by Kaplan-Meier and Cox proportional hazards methods. A total of 28 patients (15 males, 13 females) were treated between 1995 and 2014, with a median age at diagnosis of 26 years (range 5-61). Median follow-up was 62.2 months and 3 patients were lost to follow-up postoperatively. Thirteen patients experienced recurrent/progressive disease and 2-year PFS was 75% (95% CI 53-88%). Two-year PFS was 48% for MIB-1 labeling >4% versus 90% for ≤4% (HR 5.4, CI 2.2-27.8, p = 0.0026). Nine patients (32%) had gross total resections (GTR) and 19 (68%) had subtotal resections (STR). PFS for >80% resection was 83 versus 67% for ≤80% resection (HR 0.67, CI 0.23-2.0, p = 0.47). Three STR patients (16%) received adjuvant radiation which significantly improved overall PFS (p = 0.049). Estimated 5-year PFS was 67% for STR with radiotherapy versus 53% for STR without radiotherapy. Salvage therapy regimens were diverse and resulted in stable disease for 54% of patients and additional progression for 38 %. Two patients with neuropathology-confirmed atypical neurocytomas died at 4.3 and 113.4 months after initial surgery. For central neurocytomas, MIB-1 labeling index >4% is predictive of poorer outcome and our data suggest that adjuvant radiotherapy after STR may improve PFS. Most patients requiring salvage therapy will be stabilized and multiple modalities can be effectively utilized
- …