3,560 research outputs found
Instrumental Variables: An Econometrician's Perspective
I review recent work in the statistics literature on instrumental variables
methods from an econometrics perspective. I discuss some of the older,
economic, applications including supply and demand models and relate them to
the recent applications in settings of randomized experiments with
noncompliance. I discuss the assumptions underlying instrumental variables
methods and in what settings these may be plausible. By providing context to
the current applications, a better understanding of the applicability of these
methods may arise.Comment: Published in at http://dx.doi.org/10.1214/14-STS480 the Statistical
Science (http://www.imstat.org/sts/) by the Institute of Mathematical
Statistics (http://www.imstat.org
Recursive Partitioning for Heterogeneous Causal Effects
In this paper we study the problems of estimating heterogeneity in causal
effects in experimental or observational studies and conducting inference about
the magnitude of the differences in treatment effects across subsets of the
population. In applications, our method provides a data-driven approach to
determine which subpopulations have large or small treatment effects and to
test hypotheses about the differences in these effects. For experiments, our
method allows researchers to identify heterogeneity in treatment effects that
was not specified in a pre-analysis plan, without concern about invalidating
inference due to multiple testing. In most of the literature on supervised
machine learning (e.g. regression trees, random forests, LASSO, etc.), the goal
is to build a model of the relationship between a unit's attributes and an
observed outcome. A prominent role in these methods is played by
cross-validation which compares predictions to actual outcomes in test samples,
in order to select the level of complexity of the model that provides the best
predictive power. Our method is closely related, but it differs in that it is
tailored for predicting causal effects of a treatment rather than a unit's
outcome. The challenge is that the "ground truth" for a causal effect is not
observed for any individual unit: we observe the unit with the treatment, or
without the treatment, but not both at the same time. Thus, it is not obvious
how to use cross-validation to determine whether a causal effect has been
accurately predicted. We propose several novel cross-validation criteria for
this problem and demonstrate through simulations the conditions under which
they perform better than standard methods for the problem of causal effects. We
then apply the method to a large-scale field experiment re-ranking results on a
search engine
Average causal response with variable treatment intensity
Evaluation;Treatment
Recent developments in the econometrics of program evaluation
Many empirical questions in economics and other social sciences depend on causal effects of programs or policies. In the last two decades much research has been done on the econometric and statistical analysis of the effects of such programs or treatments. This recent theoretical literature has built on, and combined features of, earlier work in both the statistics and econometrics literatures. It has by now reached a level of maturity that makes it an important tool in many areas of empirical research in economics, including labor economics, public finance, development economics, industrial organization and other areas of empirical micro-economics. In this review we discuss some of the recent developments. We focus primarily on practical issues for empirical researchers, as well as provide a historical overview of the area and give references to more technical research.
- …