167 research outputs found
Idiopathische thrombozytopenische Purpura im Kindesalter
Zusammenfassung: Die idiopathische thrombozytopenische Purpura (ITP) ist eine Blutungskrankheit, die durch eine verkürzte Lebensdauer der Thrombozyten charakterisiert ist. Sie ist heterogen ausgeprägt und wird durch endogene und erworbene Faktoren beeinflusst. Sie ist eine Ausschlussdiagnose, deren Differenzialdiagnose stets bedacht werden muss. Die Unkenntnis der Ätiologie und der Mangel an klinischen Daten aus kontrollierten prospektiven Studien haben Kontroversen hinsichtlich Diagnose und Behandlung zur Folge. Die bisherigen prospektiven Therapiestudien haben die Beschleunigung des Thrombozytenanstiegs zum Ziel. Diese Zielsetzung wird oft in den klinischen Alltag übertragen, ohne dass bisher gezeigt werden konnte, dass ein rascher Thrombozytenanstieg von klinischem Wert ist. Bei der Behandlung des Patienten mit ITP ist meist eine Vorbeugung vor fatalen Blutungen beabsichtigt. Diese sind aber im Kindesalter sehr selten. Die Therapieziele im klinischen Alltag, aber auch in klinischen Studien müssen überdacht werden. Andere wichtige Gesichtspunkte sind Blutungen, die Lebensqualität des Patienten und seiner Angehörigen, Nebenwirkungen von Medikamenten und ökonomische Aspekt
Enrichment of Sialylated IgG by Lectin Fractionation Does Not Enhance the Efficacy of Immunoglobulin G in a Murine Model of Immune Thrombocytopenia
Intravenous immunoglobulin G (IVIg) is widely used against a range of clinical symptoms. For its use in immune modulating therapies such as treatment of immune thrombocytopenic purpura high doses of IVIg are required. It has been suggested that only a fraction of IVIg causes this anti immune modulating effect. Recent studies indicated that this fraction is the Fc-sialylated IgG fraction. The aim of our study was to determine the efficacy of IVIg enriched for sialylated IgG (IVIg-SA (+)) in a murine model of passive immune thrombocytopenia (PIT). We enriched IVIg for sialylated IgG by Sambucus nigra agglutinin (SNA) lectin fractionation and determined the degree of sialylation. Analysis of IVIg-SA (+) using a lectin-based ELISA revealed that we enriched predominantly for Fab-sialylated IgG, whereas we did not find an increase in Fc-sialylated IgG. Mass spectrometric analysis confirmed that Fc sialylation did not change after SNA lectin fractionation. The efficacy of sialylated IgG was measured by administering IVIg or IVIg-SA (+) 24 hours prior to an injection of a rat anti-mouse platelet mAb. We found an 85% decrease in platelet count after injection of an anti-platelet mAb, which was reduced to a 70% decrease by injecting IVIg (p<0.01). In contrast, IVIg-SA (+) had no effect on the platelet count. Serum levels of IVIg and IVIg-SA (+) were similar, ruling out enhanced IgG clearance as a possible explanation. Our results indicate that SNA lectin fractionation is not a suitable method to enrich IVIg for Fc-sialylated IgG. The use of IVIg enriched for Fab-sialylated IgG abolishes the efficacy of IVIg in the murine PIT model
Analysis and Functional Consequences of Increased Fab-Sialylation of Intravenous Immunoglobulin (IVIG) after Lectin Fractionation
It has been proposed that the anti-inflammatory effects of intravenous immunoglobulin (IVIG) might be due to the small fraction of Fc-sialylated IgG. In this study we biochemically and functionally characterized sialic acid-enriched IgG obtained by Sambucus nigra agglutinin (SNA) lectin fractionation. Two main IgG fractions isolated by elution with lactose (E1) or acidified lactose (E2) were analyzed for total IgG, F(ab’)2 and Fc-specific sialic acid content, their pattern of specific antibodies and anti-inflammatory potential in a human in vitro inflammation system based on LPS- or PHA-stimulated whole blood. HPLC and LC-MS testing revealed an increase of sialylated IgG in E1 and more substantially in the E2 fraction. Significantly, the increased amount of sialic acid residues was primarily found in the Fab region whereas only a minor increase was observed in the Fc region. This indicates preferential binding of the Fab sialic acid to SNA. ELISA analyses of a representative range of pathogen and auto-antigens indicated a skewed antibody pattern of the sialylated IVIG fractions. Finally, the E2 fraction exerted a more profound anti-inflammatory effect compared to E1 or IVIG, evidenced by reduced CD54 expression on monocytes and reduced secretion of MCP-1 (CCL2); again these effects were Fab- but not Fc-dependent. Our results show that SNA fractionation of IVIG yields a minor fraction (approx. 10%) of highly sialylated IgG, wherein the sialic acid is mainly found in the Fab region. The tested anti-inflammatory activity was associated with Fab not Fc sialylation
EEG for good outcome prediction after cardiac arrest: a multicentre cohort study.
AIM
Assess the prognostic ability of a non-highly malignant and reactive EEG to predict good outcome after cardiac arrest (CA).
METHODS
Prospective observational multicentre substudy of the "Targeted Hypothermia versus Targeted Normothermia after Out-of-hospital Cardiac Arrest Trial", also known as the TTM2-trial. Presence or absence of highly malignant EEG patterns and EEG reactivity to external stimuli were prospectively assessed and reported by the trial sites. Highly malignant patterns were defined as burst-suppression or suppression with or without superimposed periodic discharges. Multimodal prognostication was performed 96 hours after CA. Good outcome at 6 months was defined as a modified Rankin Scale score of 0-3.
RESULTS
873 comatose patients at 59 sites had an EEG assessment during the hospital stay. Of these, 283 (32%) had good outcome. EEG was recorded at a median of 69 hours (IQR 47-91) after CA. Absence of highly malignant EEG patterns was seen in 543 patients of whom 255 (29% of the cohort) had preserved EEG reactivity. A non-highly malignant and reactive EEG had 56% (CI 50-61) sensitivity and 83% (CI 80-86) specificity to predict good outcome. Presence of EEG reactivity contributed (p<0.001) to the specificity of EEG to predict good outcome compared to only assessing background pattern without taking reactivity into account.
CONCLUSION
Nearly one-third of comatose patients resuscitated after CA had a non-highly malignant and reactive EEG that was associated with a good long-term outcome. Reactivity testing should be routinely performed since preserved EEG reactivity contributed to prognostic performance
Expression of the 60 kDa and 71 kDa heat shock proteins and presence of antibodies against the 71 kDa heat shock protein in pediatric patients with immune thrombocytopenic purpura
BACKGROUND: Immune thrombocytopenic purpura (ITP) is an autoimmune disease characterized by platelet destruction resulting from autoantibodies against platelet proteins, particularly platelet glycoprotein IIb/IIIa. Heat shock proteins (Hsp) have been shown to be major antigenic determinants in some autoimmune diseases. Antibodies to Hsps have also been reported to be associated with a number of pathological states. METHODS: Using western blot, we measured the levels of the 60 kDa heat shock protein (Hsp60) and of the inducible 71 kDa member of the Hsp70 family (Hsp71) in lymphocytes and the presence of antibodies against these hsps in plasma of 29 pediatric patients with ITP before the treatment and in 6 other patients before and after treatment. RESULTS: Interestingly only one out of 29 patients showed detectable Hsp60 in lymphocytes while this heat shock protein was detected in the 30 control children. Hsp71 levels were slightly lower in lymphocytes of patients with ITP than in controls (1567.8 ± 753.2 via 1763.2 ± 641.8 integrated optical density (IOD) units). There was a small increase of Hsp71 after recovery from ITP. The titers of plasma antibodies against Hsp60 and Hsp71 were also examined. Antibodies against Hsp71 were more common in ITP patients (15/29) than in control children (5/30). The titer of anti-Hsp71 was also higher in children patients with ITP. The prevalence of ITP children with antibodies against Hsp71 (51.7%) was as high as those with antibodies against platelet membrane glycoproteins (58.3%). CONCLUSIONS: In summary, pediatric patients with ITP showed no detectable expression of Hsp60 in lymphocytes and a high prevalence of antibody against Hsp71 in plasma. These changes add to our understanding of the pathogenesis of ITP and may be important for the diagnosis, prognosis and treatment of ITP
Reduced Incidence of Slowly Progressive Heymann Nephritis in Rats Immunized With a Modified Vaccination Technique
A slowly progressive Heymann nephritis (SPHN) was induced in three groups of rats by weekly injections of a chemically modified renal tubular antigen in an aqueous medium. A control group of rats received the chemically unmodified version of the antigen in an aqueous solution. One group of SPHN rats were pre- and post-treated with weekly injections of IC made up of rKF3 and rarKF3 IgM antibody at antigen excess (MIC) (immune complexes [ICs] containing sonicated ultracentrifuged [u/c] rat kidney fraction 3 [rKF3] antigen and IgM antibodies specific against the antigen, at slight antigen excess). One group of SPHN rats were post-treated with MIC 3 weeks after the induction of the disease and one group of SPHN animals received no treatment. The control group of rats received pre- and post-treatment with sonicated u/c rKF3
From glycosylation disorders to dolichol biosynthesis defects: a new class of metabolic diseases
Polyisoprenoid alcohols are membrane lipids that are present in every cell, conserved from archaea to higher eukaryotes. The most common form, alpha-saturated polyprenol or dolichol is present in all tissues and most organelle membranes of eukaryotic cells. Dolichol has a well defined role as a lipid carrier for the glycan precursor in the early stages of N-linked protein glycosylation, which is assembled in the endoplasmic reticulum of all eukaryotic cells. Other glycosylation processes including C- and O-mannosylation, GPI-anchor biosynthesis and O-glucosylation also depend on dolichol biosynthesis via the availability of dolichol-P-mannose and dolichol-P-glucose in the ER. The ubiquity of dolichol in cellular compartments that are not involved in glycosylation raises the possibility of additional functions independent of these protein post-translational modifications. The molecular basis of several steps involved in the synthesis and the recycling of dolichol and its derivatives is still unknown, which hampers further research into this direction. In this review, we summarize the current knowledge on structural and functional aspects of dolichol metabolites. We will describe the metabolic disorders with a defect in known steps of dolichol biosynthesis and recycling in human and discuss their pathogenic mechanisms. Exploration of the developmental, cellular and biochemical defects associated with these disorders will provide a better understanding of the functions of this lipid class in human
The small molecule specific EphB4 kinase inhibitor NVP-BHG712 inhibits VEGF driven angiogenesis
EphB4 and its cognitive ligand ephrinB2 play an important role in embryonic vessel development and vascular remodeling. In addition, several reports suggest that this receptor ligand pair is also involved in pathologic vessel formation in adults including tumor angiogenesis. Eph/ephrin signaling is a complex phenomena characterized by receptor forward signaling through the tyrosine kinase of the receptor and ephrin reverse signaling through various protein–protein interaction domains and phosphorylation motifs of the ephrin ligands. Therefore, interfering with EphR/ephrin signaling by the means of targeted gene ablation, soluble receptors, dominant negative mutants or antisense molecules often does not allow to discriminate between inhibition of Eph/ephrin forward and reverse signaling. We developed a specific small molecular weight kinase inhibitor of the EphB4 kinase, NVP-BHG712, which inhibits EphB4 kinase activity in the low nanomolar range in cellular assays showed high selectivity for targeting the EphB4 kinase when profiled against other kinases in biochemical as well as in cell based assays. Furthermore, NVP-BHG712 shows excellent pharmacokinetic properties and potently inhibits EphB4 autophosphorylation in tissues after oral administration. In vivo, NVP-BHG712 inhibits VEGF driven vessel formation, while it has only little effects on VEGF receptor (VEGFR) activity in vitro or in cellular assays. The data shown here suggest a close cross talk between the VEGFR and EphR signaling during vessel formation. In addition to its established function in vascular remodeling and endothelial arterio-venous differentiation, EphB4 forward signaling appears to be an important mediator of VEGF induced angiogenesis since inhibition of EphB4 forward signaling is sufficient to inhibit VEGF induced angiogenesis
- …