4 research outputs found

    Influenza Species and Subtypes Circulation among Hospitalized Patients in Laleh Hospital during Two Influenza Seasonal (2016-2017 and 2017-2018) Using a Multiplex Real Time-Polymerase Chain Reaction

    No full text
    The introduction of polymerase chain reaction (PCR) techniques has improved the detection of respiratory viruses, particularly with the use of multiplex real-time technique with the capability of simultaneous detection of various pathogens in a single reaction. The aim of this study was to apply the above technology for the diagnosis of influenza infections and at the same time to differentiate between common flu species between hospitalized patients in Laleh hospital (Iran) between two flu seasons (2016- 2017 and 2017-2018). Different respiratory specimens were collected from 540 patients from a period of December 2016 to May 2018 and were sent to the laboratory for molecular diagnosis. RNAs were extracted and subsequently, a multiplex real time PCR identifying flu A, flu B and typing flu A (H1N1) was carried out. The mean age of patients was 47.54±23.96. 216 (40%) and 321 (60%) of subjects were male and female, respectively. 219 out of 540 (40.5%) were positive for influenza infection including flu A (n=97, 44.3%), flu A (H1N1) (n=45, 20.7%) and flu B (n=77, 35%). Flu A was the dominant species on 2016-2017 and flu B was the major species on 2017-2018. Flu A (H1N1) was comparable in both time periods. Flu infections were most frequently diagnosed in age groups 21-40. Flu-positive patients suffered more from body pain and sore throat than flunegative patients with significant statistical difference (P values <0.001). The mean duration of hospitalization was shorter for flu-positive patients (P value = 0.016). Application of multiplex real time PCR could facilitate the influenza diagnosis in a short period of time, benefiting patients from exclusion of bacterial infections and avoiding unnecessary antibiotic therapy. Influenza diagnosis was not achieved in up to 60% of flu-like respiratory infections, suggesting the potential benefit of adopting the same methodology for assessing the involvement of other viral or/and bacterial pathogens in those patients

    Prevalence of human papilloma virus (HPV) genotypes between outpatients males and females referred to seven laboratories in Tehran, Iran

    No full text
    BACKGROUND: Human papilloma virus (HPV) causes the most common sexually-transmitted infection especially among sexually-active individuals. The aim of study was to characterize the molecular characterization of HPV genotypes between 5176 female and male patients. METHODS: HPV DNA was extracted from genital swabs of the study participants and amplified by Real Time Polymerase Chain Reaction (PCR). Genotyping was performed for 2525 cases using REALQUALITY RQ-Multi HPV Detection Kit for the identification of 14 high risk (HR) and 2 low risk (LR) HPV genotypes. Demographic figures were analyzed in correlation with virological data statistically. RESULTS: Out of 5176 cases from 7 laboratories, 2727 (53%) were positive for HPV, of which. 2372(87%) women and 355 (13%) men were HPV positive. However, in an intra-gender analysis, positive rate was higher in men (355/637, 55.7%) than in women (2372/4539, 52%; P value 0.007). HPV positive patients were younger than negative individuals. Positive rate was higher among age categories 20–40. Genotyping was performed for 2525 cases. Out of 1219 (48%) patients who contained single genotypes, 566 (22%) and 653 (26%) harboured HR and LR genotypes, respectively. In females and males, 1189 (54%) and 117 (37%) contained multiple genotypes. No substantial associations were found between different age categories and HR/LR and multiple genotypes distribution. CONCLUSION: The prevalence of HPV infection in both genders was high. However, men had a higher rate of infection. These observations highlighted the necessity for a plan for targeted education to younger population in the society as well as application of infection control measures against HPV infection, especially in terms of general population mass HPV vaccination

    Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021

    No full text
    BackgroundEstimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period.Methods22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution.FindingsGlobal all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations.InterpretationGlobal adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic
    corecore