18,706 research outputs found

    FeAs-based superconductivity: a case study of the effects of transition metal doping on BaFe2As2

    Full text link
    The recently discovered FeAs-based superconductors are a new, promising set of materials for both technological as well as basic research. They offer transition temperatures as high as 55 K as well as essentially isotropic and extremely large upper, superconducting critical fields in excess of 40 T at 20 K. In addition they may well provide insight into exotic superconductivity that extends beyond just FeAs-based superconductivity, perhaps even shedding light on the still perplexing CuO-based high-Tc materials. Whereas superconductivity can be induced in the RFeAsO (R = rare earth) and AEFe2As2 (AE = Ba, Sr, Ca)) families by a number of means, transition metal doping of BaFe2As2, e.g. Ba(Fe1-xTMx)2As2, offers the easiest experimental access to a wide set of materials. In this review we present an overview and summary of the effect of TM doping (TM = Co, Ni, Cu, Pd, and Rh) on BaFe2As2. The resulting phase diagrams reveal the nature of the interaction between the structural, magnetic and superconducting phase transitions in these compounds and delineate a region of phase space that allows for the stabilization of superconductivity.Comment: edited and shortened version is accepted to AR:Condensed Matter Physic

    Latent awareness: Early conscious access to motor preparation processes is linked to the readiness potential

    Get PDF
    An experience of intention to move accompanies execution of some voluntary actions. The Readiness Potential (RP) is an increasing negativity over motor brain areas prior to voluntary movement. Classical studies suggested that the RP starts before intention is consciously accessed as measured by offline recall-based reports, yet the interpretation of the RP and its temporal relation to awareness of intention remain controversial. We designed a task in which self-paced actions could be interrupted at random times by a visual cue that probed online awareness of intention. Participants were instructed to respond by pressing a key if they felt they were actively preparing a self-paced movement at the time of the cue (awareness report), but to ignore the cue otherwise. We show that an RP-like activity was more strongly present before the cue for probes eliciting awareness reports than otherwise. We further show that recall-based reports of the time of conscious intention are linked to visual attention processes, whereas online reports elicited by a probe are not. Our results suggest that awareness of intention is accessible at relatively early stages of motor preparation and that the RP is specifically associated with this conscious experience

    Generalized Riemann sums

    Full text link
    The primary aim of this chapter is, commemorating the 150th anniversary of Riemann's death, to explain how the idea of {\it Riemann sum} is linked to other branches of mathematics. The materials I treat are more or less classical and elementary, thus available to the "common mathematician in the streets." However one may still see here interesting inter-connection and cohesiveness in mathematics

    Focusing and Compression of Ultrashort Pulses through Scattering Media

    Full text link
    Light scattering in inhomogeneous media induces wavefront distortions which pose an inherent limitation in many optical applications. Examples range from microscopy and nanosurgery to astronomy. In recent years, ongoing efforts have made the correction of spatial distortions possible by wavefront shaping techniques. However, when ultrashort pulses are employed scattering induces temporal distortions which hinder their use in nonlinear processes such as in multiphoton microscopy and quantum control experiments. Here we show that correction of both spatial and temporal distortions can be attained by manipulating only the spatial degrees of freedom of the incident wavefront. Moreover, by optimizing a nonlinear signal the refocused pulse can be shorter than the input pulse. We demonstrate focusing of 100fs pulses through a 1mm thick brain tissue, and 1000-fold enhancement of a localized two-photon fluorescence signal. Our results open up new possibilities for optical manipulation and nonlinear imaging in scattering media

    Nonconservative Lagrangian mechanics II: purely causal equations of motion

    Full text link
    This work builds on the Volterra series formalism presented in [D. W. Dreisigmeyer and P. M. Young, J. Phys. A \textbf{36}, 8297, (2003)] to model nonconservative systems. Here we treat Lagrangians and actions as `time dependent' Volterra series. We present a new family of kernels to be used in these Volterra series that allow us to derive a single retarded equation of motion using a variational principle

    Spitzer Observations of the North Ecliptic Pole

    Get PDF
    We present a photometric catalog for Spitzer Space Telescope warm mission observations of the North Ecliptic Pole (NEP; centered at R.A.=18h00m00s\rm R.A.=18^h00^m00^s, Decl.=66d33m38s.552\rm Decl.=66^d33^m38^s.552). The observations are conducted with IRAC in 3.6 μ\mum and 4.5 μ\mum bands over an area of 7.04 deg2^2 reaching 1σ\sigma depths of 1.29 μ\muJy and 0.79 μ\muJy in the 3.6 μ\mum and 4.5 μ\mum bands respectively. The photometric catalog contains 380,858 sources with 3.6 μ\mum and 4.5 μ\mum band photometry over the full-depth NEP mosaic. Point source completeness simulations show that the catalog is 80% complete down to 19.7 AB. The accompanying catalog can be utilized in constraining the physical properties of extra-galactic objects, studying the AGN population, measuring the infrared colors of stellar objects, and studying the extra-galactic infrared background light.Comment: 10 pages, 11 figures and 3 tables. Accepted to the ApJ

    Multi-wavelength analysis of 18um-selected galaxies in the AKARI/IRC monitor field towards the North Ecliptic Pole

    Full text link
    We present an initial analysis of AKARI 18um-selected galaxies using all 9 photometric bands at 2-24um available in the InfraRed Camera (IRC), in order to demonstrate new capabilities of AKARI cosmological surveys. We detected 72 sources at 18um in an area of 50.2 arcmin^2 in the AKARI/IRC monitor field towards the North Ecliptic Pole (NEP). From this sample, 25 galaxies with probable redshifts z>~ 0.5 are selected with a single colour cut (N2-N3>0.1) for a detailed SED analysis with ground-based BVRi'z'JK data. Using an SED radiative transfer model of starbursts covering the wavelength range UV -- submm, we derive photometric redshifts from the optical-MIR SEDs of 18um-selected galaxies. From the best-fit SED models, we show that the IRC all-band photometry is capable of tracing the steep rise in flux at the blue side of the PAH 6.2um emission feature. This indicates that the IRC all-band photometry is useful to constrain the redshift of infrared galaxies, specifically for dusty galaxies with a less prominent 4000A break. Also, we find that the flux dip between the PAH 7.7 and 11.2um emission feature is recognizable in the observed SEDs of galaxies at z~1. By using such a colour anomaly due to the PAH and silicate absorption features, unique samples of ULIRGs at z~1, `silicate-break' galaxies, can be constructed from large cosmological surveys of AKARI towards the NEP, i.e. the NEP-Deep and NEP-Wide survey. This pilot study suggests the possibility of detecting many interesting galaxy properties in the NEP-Deep and Wide surveys, such as a systematic difference in SEDs between high- and low-z ULIRGs, and a large variation of the PAH inter-band strength ratio in galaxies at high redshifts. [abridged]Comment: Accepted for publication in PASJ, AKARI special issu

    Measurements of heterotypic associations between cluster of differentiation CD74 and CD44 in human breast cancer-derived cells

    Get PDF
    Interactions between pairs of membrane-bound receptors can enhance tumour development with implications for targeted therapies for cancer. Here we demonstrate clear heterotypic interaction between cluster of differentiation (CD) 74 and CD44, which might act in synergy and hence contribute to breast cancer progression. CD74, a type II transmembrane glycoprotein, is a chaperone for MHC class II biosynthesis and a receptor for the macrophage migration inhibitory factor (MIF). CD44 is the receptor for hyaluronic acid and is a type II transmembrane protein. Interactions between CD74, MIF and the intra-cytoplasmic domain of CD44 result in activation of ERK1/2, leading to increased cell proliferation and decreased apoptosis. The level of CD44 in the breast tumor cell lines CAMA-1, MDA-MB-231, MDA-MB-435 and the immortalized normal luminal cell line 226LDM was higher than that of CD74. It was also observed that CD74 and CD44 exhibit significant variation in expression levels across the cells. CD74 and CD44 were observed to accumulate in cytoplasmic compartments, suggesting they associate with each other to facilitate tumour growth and metastasis. Use of a novel and validated colocalisation and image processing approach, coupled with co-immunoprecipitation, confirmed that CD74 and CD44 physically interact, suggesting a possible role in breast tumour growth. This is the first time that CD74 and CD44 colocalization has been quantified in breast cancer cells using a non-invasive validated bioimaging procedure. Measuring the co-expression levels of CD74 and CD44 could potentially be used as a 'biomarker signature' to monitor different stages of breast cancer
    • …
    corecore