46 research outputs found

    Inhibition of Influenza M2-Induced Cell Death Alleviates Its Negative Contribution to Vaccination Efficiency

    Get PDF
    The effectiveness of recombinant vaccines encoding full-length M2 protein of influenza virus or its ectodomain (M2e) have previously been tested in a number of models with varying degrees of success. Recently, we reported a strong cytotoxic effect exhibited by M2 on mammalian cells in vitro. Here we demonstrated a decrease in protection when M2 was added to a DNA vaccination regimen that included influenza NP. Furthermore, we have constructed several fusion proteins of conserved genes of influenza virus and tested their expression in vitro and protective potential in vivo. The four-partite NP-M1-M2-NS1 fusion antigen that has M2 sequence engineered in the middle part of the composite protein was shown to not be cytotoxic in vitro. A three-partite fusion protein (consisting of NP, M1 and NS1) was expressed much more efficiently than the four-partite protein. Both of these constructs provided statistically significant protection upon DNA vaccination, with construct NP-M1-M2-NS1 being the most effective. We conclude that incorporation of M2 into a vaccination regimen may be beneficial only when its apparent cytotoxicity-linked negative effects are neutralized. The possible significance of this data for influenza vaccination regimens and preparations is discussed

    Synthetic Nanoparticles for Vaccines and Immunotherapy

    Get PDF
    The immune system plays a critical role in our health. No other component of human physiology plays a decisive role in as diverse an array of maladies, from deadly diseases with which we are all familiar to equally terrible esoteric conditions: HIV, malaria, pneumococcal and influenza infections; cancer; atherosclerosis; autoimmune diseases such as lupus, diabetes, and multiple sclerosis. The importance of understanding the function of the immune system and learning how to modulate immunity to protect against or treat disease thus cannot be overstated. Fortunately, we are entering an exciting era where the science of immunology is defining pathways for the rational manipulation of the immune system at the cellular and molecular level, and this understanding is leading to dramatic advances in the clinic that are transforming the future of medicine.1,2 These initial advances are being made primarily through biologic drugs– recombinant proteins (especially antibodies) or patient-derived cell therapies– but exciting data from preclinical studies suggest that a marriage of approaches based in biotechnology with the materials science and chemistry of nanomaterials, especially nanoparticles, could enable more effective and safer immune engineering strategies. This review will examine these nanoparticle-based strategies to immune modulation in detail, and discuss the promise and outstanding challenges facing the field of immune engineering from a chemical biology/materials engineering perspectiveNational Institutes of Health (U.S.) (Grants AI111860, CA174795, CA172164, AI091693, and AI095109)United States. Department of Defense (W911NF-13-D-0001 and Awards W911NF-07-D-0004

    Identification of a sequence element immediately upstream of the polypurine tract that is essential for replication of simian immunodeficiency virus.

    No full text
    A short stretch of T-rich sequences immediately upstream of the polypurine tract (PPT) is highly conserved in the proviral genomes of human and simian immunodeficiency viruses (HIV and SIV). To investigate whether this 'U-box' influences SIVmac239 replication, we analyzed the properties of mutants with changes in this region of the viral genome. All mutants were either retarded in their growth (up to one month delay) or did not replicate detectably in CEMx174 cells. When U-box mutants did replicate detectably, compensatory changes were consistently observed in the viral genome. The most common compensatory change was the acquisition of thymidines immediately upstream of the PPT, but marked expansion in the length of the PPT was also observed. U-box mutants produced transiently by transfection were severely impaired in their ability to produce reverse transcripts in infectivity assays. Analysis of transiently produced mutant virus revealed no defect in RNA packaging or virus assembly. These results identify a new structural element important for an early step in the viral life cycle that includes reverse transcription

    Efficient transcription and replication of simian immunodeficiency virus in the absence of NF-kappaB and Sp1 binding elements.

    No full text
    Ten mutants of the simian immunodeficiency virus (SIV) SIVmac239 bearing deletions (delta) or substitutions (subst) in the NF-kappaB and/or Sp1 binding elements were created, and the replicative capacities of the mutants were analyzed. All mutants, including one extensively mutagenized strain entirely missing the NF-kappaB and four Spl binding elements, replicated with wild-type kinetics and to a wild-type level in peripheral blood mononuclear cell cultures in 50 to 100% of the experiments. One group of mutants replicated very similarly to SIVmac239 in kinetics and yield in CEMxl74 cells (2xNFKappaB > or = SlVmac239 approximately deltaNFkappaB approximately deltaSpl234 approximately substNFkappaB approximately substSpl2 approximately substSp23), while a second group replicated with delayed or slightly delayed kinetics in CEMxl74 cells (SIVmac239 > substSp34 > deltaNFkappaBdeltaSpl234 approximately deltaNFkappaBdeltaSp1 > substSpl234). Reversions or additional mutations were not detected in the U3 and R regions of proviral DNA from CEMxl74 cells infected with the SIVmac239 mutants. Similar results were obtained when mutants of SIVmacMER (a macrophage-competent derivative of SIVmac239) were tested in peripheral blood mononuclear cell and CEMx174 cultures. However, the growth of most mutated viruses was suppressed in primary rhesus monkey alveolar macrophages (SIVmacMER approximately 2xNFkappaB approximately substNFkappaB > deltaNFkappaB > deltaNFkappaBdeltaSpl234 approximately deltaNFkappaBdeltaSpl > deltaSpl234 approximately substSpl2 > substSp23 approximately substSp34 approximately substSpl234 > or = SIVmac239). Thus, changes in the Sp1 binding sites had the most dramatic effects on SIVmac replication in primary macrophage cultures. Analysis of long terminal repeat-driven secreted alkaline phosphatase activity in transient assays showed that, unlike human immunodeficiency virus type 1, the SIV long terminal repeat possesses an enhancer region just upstream of the NF-kappaB element which maintains significant levels of basal transcription in the absence of NF-kappaB and Sp1 sites. This region is responsive to transactivation by Tat. In addition, the SIV TATA box was shown to be stronger than that of human immunodeficiency virus type 1. Therefore, the surprisingly high replicative capacity of NF-kappaB and Sp1 binding site mutants of SIVmac is due to unique features or the enhancer/promoter region

    Genetic analysis of simian virus 40 from brains and kidneys of macaque monkeys

    No full text
    Simian virus 40 (SV40) was isolated from the brains of three rhesus monkeys and the kidneys of two other rhesus monkeys with simian immunodeficiency virus-induced immunodeficiency. A striking feature of these five cases was the tissue specificity of the SV40 replication. SV40 was also isolated from the kidney of a Taiwanese rock macaque with immunodeficiency probably caused by type D retrovirus infection. Multiple full-length clones were derived from all six fresh SV40 isolates, and two separate regions of their genomes were sequenced: the origin (ori)-enhancer region and the coding region for the carboxy terminus of T antigen (T-ag). None of the 23 clones analyzed had two 72-bp enhancer elements as are present in the commonly used laboratory strain 776 of SV40; 22 of these 23 clones were identical in their ori-enhancer sequences, and these had only a single 72-bp enhancer element. We found no evidence for differences in ori-enhancer sequences associated with tissue-specific SV40 replication. The T-ag coding sequence that was analyzed was identical in all clones from kidney. However, significant variation was observed in the carboxy-terminal region of T-ag in SV40 isolated from brain tissues. This sequence variation was located in a region previously reported to be responsible for SV40 host range in cultured cell lines. Thus, SV40 appears to be an opportunistic pathogen in the setting of simian immunodeficiency virus-induced immunodeficiency, similarly to JC virus in human immunodeficiency virus-infected humans, the enhancer sequence organization generally attributed to SV40 is not representative of natural SV40 isolates, and sequence variation near the carboxy terminus of T-ag may play a role in tissue-specific replication of SV40

    CD1d Mediates T-Cell-Dependent Resistance to Secondary Infection with Encephalomyocarditis Virus (EMCV) In Vitro and Immune Response to EMCV Infection In Vivo

    No full text
    The innate and adaptive immune responses have evolved distinct strategies for controlling different viral pathogens. Encephalomyocarditis virus (EMCV) is a picornavirus that can cause paralysis, diabetes, and myocarditis within days of infection. The optimal innate immune response against EMCV in vivo requires CD1d. Interaction of antigen-presenting cell CD1d with distinct natural killer T-cell (“NKT”) populations can induce rapid gamma interferon (IFN-Îł) production and NK-cell activation. The T-cell response of CD1d-deficient mice (lacking all NKT cells) against acute EMCV infection was further studied in vitro and in vivo. EMCV persisted at higher levels in CD1d-knockout (KO) splenocyte cultures infected in vitro. Furthermore, optimal resistance to repeat cycles of EMCV infection in vitro was also shown to depend on CD1d. However, this was not reflected in the relative levels of NK-cell activation but rather by the responses of both CD4(+) and CD8(+) T-cell populations. Repeated EMCV infection in vitro induced less IFN-Îł and alpha interferon (IFN-α) from CD1d-deficient splenocytes than with the wild type. Furthermore, the level of EMCV replication in wild-type splenocytes was markedly and specifically increased by addition of blocking anti-CD1d antibody. Depletion experiments demonstrated that dendritic cells contributed less than the combination of NK and NKT cells to anti-EMCV responses and that none of these cell types was the main source of IFN-α. Finally, EMCV infection in vivo produced higher levels of viremia in CD1d-KO mice than in wild-type animals, coupled with significantly less lymphocyte activation and IFN-α production. These results point to the existence of a previously unrecognized mechanism of rapid CD1d-dependent stimulation of the antiviral adaptive cellular immune response

    A mutation in integrase can compensate for mutations in the simian immunodeficiency virus att site.

    No full text
    Sequences at the left terminus of U3 in the left long terminal repeat (LTR) and at the right terminus of U5 in the right LTR are important for integration of retroviral DNA. In the infectious pathogenic molecular clone of simian immunodeficiency virus strain mac239 (SIVmac239), 10 of the 12 terminal base pairs form an imperfect inverted repeat structure (5' TGGAAGGGATTT 3' [nucleotides 1 to 12] and 3' ACGATCCCTAAA 5' [nucleotides 10279 to 10268]). Nineteen different mutant forms of SIVmac239 proviral DNA with changes at one or more of the positions in each of the 12-terminal-base-pair regions were constructed. Viral replication was severely or completely compromised with nine of these mutants. Revertants appeared 40 to 50 days after transfection in two independent experiments with mutant 7, which contained changes of AGG to TAC at positions 5 to 7 in U3 and TCC to GAA at positions 10275 to 10273 in U5. Virus produced at these times from mutant 7 transfection replicated upon reinfection with only a slight delay when compared to the wild type. Sequence analysis of the LTR and integrase regions from infected cultures revealed two predominant changes: G to A at position 10275 in U5 and Glu to Lys at position 136 in integrase. Derivatives of clone 7 in which these changes were introduced individually and together were constructed by site-specific mutagenesis. Each change individually restored replication capacity only partially. However, the combination of both mutations restored replicative capacity to that of the original revertants. These results indicate that changes in integrase can compensate for mutations in the terminal nucleotides of the SIV LTR. The results further indicate that resistance to integrase inhibitors may include both integrase and LTR mutations

    Induction of AIDS by simian immunodeficiency virus lacking NF-kappaB and SP1 binding elements.

    No full text
    Rhesus monkeys (Macaca mulatta) were infected with five strains of simian immunodeficiency virus (SIV) derived from SIVmac239 containing deletions (delta) or substitutions (subst) in NF-kappaB and Sp1 binding sites. We have shown previously that mutations in these regions still allow efficient SIVmac replication in primary lymphoid cell cultures (P. O. Ilyinskii and R. C. Desrosiers, J. Virol. 70:3118-3126, 1996). Two animals were inoculated intravenously with each mutant strain of SIVmac239: delta NFkappaB, delta Sp1234, delta NFkappaB delta Sp1234, substSp12, and substSp1234. All but one of the infected animals showed an early spike in plasma antigenemia, maintained high virus burdens, and had significant changes in lymphoid tissues, and six died with AIDS within the first 60 weeks of infection. One of the animals infected with the SIV strain delta NFkappaB delta Sp1234 showed lower levels of plasma antigenemia and lower virus burdens; the other animal infected with this same mutant strain died with AIDS 17 weeks after inoculation. No consistent novel mutations or reversions were detected in proviral sequences derived from the animals infected with the deletion mutants and the substSp12 mutant by 20 weeks postinfection. Point-mutated sequences were partially deleted in both animals infected with the substSp1234 strain. These results indicate that the NF-kappaB and Sp1 binding sites are not essential for the induction of AIDS by SIVmac239. They also provide indirect evidence for the importance of a novel enhancer element in the U3 region of the SIVmac long terminal repeat that is located immediately upstream of the NF-kappaB binding site within the C-terminal region of the nef coding sequence
    corecore