113 research outputs found

    Summer temperatures and lake development during MIS 5a interstadial: New data from the Unterangerberg palaeolake in the Eastern Alps, Austria

    Get PDF
    Investigations of interstadials during early stages of glacial periods are of special interest, because they featured large-scale transformations of the climate system and the build-up of land-based ice sheets. Lacustrine sediment sequences are considered to be important natural archives that register past climate and environmental signals. Here, we present new multi-proxy data obtained from a palaeolake succession preserved in the inner-alpine terrace of Unterangerberg, Eastern Alps. These sediments formed during the second Early WĂŒrmian Interstadial, equivalent to Marine Isotope Stage (MIS) 5a, and were used to reconstruct changes in lake conditions and to infer past air temperatures. The sediment geochemical data and subfossil aquatic biota provide evidence of a cyclic lake-fen-lake development during this interstadial. The proxy records reveal stable lacustrine conditions with dense charophyte meadows and abundant aquatic fauna during the early part of the interstadial, a progressive shallowing of the lake resulting in the spreading out of fen vegetation in the middle part, and a transition from wetland to a renewed shallow lake stage towards the end of the interstadial. Chironomids were used to reconstruct mean July air temperatures, employing a combined Norwegian-Swiss chironomid temperature inference model. The reconstruction indicates a temperature close to present-day values of ca. 18 °C in the middle part of the record, while temperatures of ca. 13-14 °C are recorded for the lower and upper parts. The proxy data from this palaeolake provide evidence of heat and drought in the middle part of MIS 5a, supported by the chironomid-based temperature reconstruction. Our reconstruction shows a climate pattern broadly similar to that found in pollen-based estimates of mean July air temperatures from sites in the northern Alpine foreland and compares well to other European palaeoclimatic reconstructions of MIS 5a climate

    Summer temperatures and environmental dynamics during the Middle WĂŒrmian (MIS 3) in the Eastern Alps: Multi-proxy records from the Unterangerberg palaeolake, Austria

    Get PDF
    Several millennial-scale warm phases perturbed the glacial climate during Marine Isotope Stage 3 (MIS 3, ca. 57-29 ka BP). Little is known about the impact of these climatic changes on Alpine ecosystems due to the sparsity of undisturbed sediment records in the Alps and their foreland. In this study, multiple sediment-archived proxies (sediment geochemistry, stable oxygen and carbon isotopes of autochthonous carbonate, and subfossil remains of macrophytes and aquatic invertebrates) were examined in five drill cores from an ancient inner-Alpine lake at Unterangerberg (Eastern Alps) to reconstruct the palaeolake environment and to estimate summer temperature changes for the first half of MIS 3. The lacustrine sedimentation in the basin began ca. 54.6 ka, tentatively correlated with the start of Greenland Interstadial (GI) 14. We identified three distinct phases in the development of the lake. (1) A cold, oligotrophic water body influenced by snow/glacier meltwater ca. 54.6-52.2 cal ka BP. (2) A clear-water, macrophyte-dominated, productive lake ca. 52.2-44.9 cal ka BP. Submerged macrophytes were dominated by the charophyte alga Chara hispida and chironomid assemblages - by Corynocera ambigua , which is absent from the present-day fauna of the Alpine region. (3) A turbid-water, less productive lake ca. 44.9-41.5 cal ka BP. This shift towards a turbid-water state, as evidenced by the drastic reduction in the abundance of submerged macrophytes and associated invertebrates, likely occurred due to increased input of meltwater. The regime shift is tentatively correlated with the start of GI 11, for which the highest temperatures of the studied MIS 3 interval are inferred. Chironomid-based reconstructions of mean July air temperatures provide interstadial temperature estimates between ca. 11 and 12.5°C (i.e. ca. 5-6°C below present-day values), which concurs with reconstructions available from the northern Alpine foreland. Cooler July temperatures (ca. 9-10°C) are reconstructed for MIS 3 stadials. The Unterangerberg lacustrine records provide valuable new insights into MIS 3 climate dynamics inside the Eastern Alps and contribute to a better understanding of the effects of climate change on the Alpine environment

    Chironomid dataset from Mutterbergersee: A late-Holocene paleotemperature proxy record for the Central Eastern Alps, Austria

    Get PDF
    We present a dataset of subfossil chironomid assemblages in the MUT-10 sediment core obtained from the high alpine lake Mutterbergersee in the Austrian Alps in 2010. The data were presented in the research article by Ilyashuk et al. (2019) "The Little Ice Age signature in a 700-year high-resolution chironomid record of summer temperatures in the Central Eastern Alps". In addition to the results of the chironomid analysis of 100 sediment samples presented in this article, we also include chironomid assemblage data from an additional 48 sediment samples that complement this dataset. The data includes raw chironomid counts, percent abundance of chironomid taxa, as well as mean July air temperature estimates derived from the chironomid record based on a chironomid-temperature transfer function. We also provide information on age-dating of the sedimentary sequence. Given the high temporal resolution and the robust age-depth model of the record, the chironomid-based reconstruction of temperature since AD 1300 provides a detailed documentation of climate change in the Eastern Alps from the Little Ice Age onwards and can be used for comparison with other independent proxy-based climate reconstructions. In addition to the data, we detail the sample processing for subfossil chironomid analysis and provide a detailed description of the reconstruction technique used for producing chironomid-based quantitative temperature inferences

    Insight into the Last Glacial Maximum climate and environments of the Baikal region

    Get PDF
    This study presents a multi-proxy record from Lake Kotokel in the Baikal region at decadal-to-multidecadal resolution and provides a reconstruction of terrestrial and aquatic environments in the area during a 2000-year interval of globally harsh climate often referred to as the Last Glacial Maximum (LGM). The studied lake is situated near the eastern shoreline of Lake Baikal, in a climatically sensitive zone that hosts boreal taiga and cold deciduous forests, coldsteppe associationstypical for northern Mongolia, and mountain tundravegetation.The results provide a detailed picture of the period in focus, indicating (i) a driest phase (c. 24.0–23.4 cal. ka BP) with low precipitation, high summer evaporation, and low lake levels, (ii) a transitional interval of unstable conditions (c. 23.4–22.6 cal. ka BP), and (iii) a phase ( c. 22.6–22.0 cal. ka BP) of relatively high precipitation (and moisture availability) and relatively high lake levels. One hotly debated issue in late Quaternary research is regional summer thermal conditions during the LGM. Our chironomid-based reconstruction suggests at least 3.5 °C higher than present summer temperatures between c. 22.6 and 22.0 cal. ka BP, which are well in line with warmer and wetter conditions in the North Atlantic region inferred from Greenland ice-cores. Overall, it appears that environments in central Eurasia during the LGM were affected by much colder than present winter temperatures and higher than present summer temperatures, although the effects of temperature oscillations were strongly influenced by changes in humidity

    After the peak water: the increasing influence of rock glaciers on alpine river systems

    Get PDF
    Human-accelerated climate change is quickly leading to glacier-free mountains, with consequences for the ecology and hydrology of alpine river systems. Water origin (i.e. glacier, snowmelt, precipitation, groundwater) is a key control on multiple facets of alpine stream ecosystems, since it drives the physico-chemical template of the habitat in which ecological communities reside and interact, and ecosystem processes occur. Accordingly, distinct alpine stream types and associated communities have been identified. However, unlike streams fed by glaciers (i.e. kryal), groundwater (i.e. krenal), and snowmelt-precipitation (i.e. rhithral), those fed by rock glaciers are still poorly documented. We characterized the physical and chemical features of these streams and investigated the influence of rock glaciers on the habitat template of alpine river networks. We analysed two subcatchments in a deglaciating area of the Central European Alps, where rock glacier-fed, groundwater-fed, and glacier-fed streams are all present. We monitored the spatial, seasonal, and diel variability of physical conditions (i.e. water temperature, turbidity, channel stability, discharge) and chemical variables (electrical conductivity, major ions and trace element concentrations) during the snowmelt, glacier ablation, and flow recession periods of two consecutive years. We observed distinct physical and chemical conditions and seasonal responses for the different stream types. Rock glacial streams were characterized by very low and constant water temperatures, stable channels, clear waters, and high concentrations of ions and trace elements that increased as summer progressed. Furthermore, one rock glacier strongly influenced the habitat template of downstream waters due to high solute export, especially in late summer under increased permafrost thaw. Given their unique set of environmental conditions, we suggest that streams fed by thawing rock glaciers are distinct river habitats that differ from those normally classified for alpine streams. Rock glaciers may become increasingly important in shaping the hydroecology of alpine river systems under continued deglaciation

    Chironomid-based palaeotemperature estimates for northeast Finland during Oxygen Isotope Stage 3.

    Get PDF
    Quantitative palaeotemperature estimates for the earlier part of Oxygen Isotope Stage (OIS-) 3 are inferred from subfossil chironomid remains. The high-latitudinal study site of Sokli, northeast Finland, provides for a unique lacustrine deposit covering the earlier part of OIS-3, and the chironomid remains found in the sediments show that a shallow lake with a diverse fauna was present at the study site throughout the record. Using a Norwegian calibration data set as a modern analogue, mean July air temperatures are reconstructed. The chironomid-inferred July air temperatures are surprisingly high, reaching values similar to the current temperature at the study site. Other proxies that were applied to the sediments included the analysis of botanical and zoological macro-remains, and our results concur with temperature estimates derived from climate indicator taxa. Summer temperatures for interstadial conditions, reconstructed with climate models, are as high as our proxy-based palaeotemperatures

    Rock glaciers and mountain hydrology: A review

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.In mountainous regions, climate change threatens cryospheric water resources, and understanding all components of the hydrological cycle is necessary for effective water resource management. Rockglaciers are climatically more resilient than glaciers and contain potentially hydrologically valuable ice volumes, and yet havereceived lessattention, even though rock glacier hydrologicalimportance may increase under future climate warming. In synthesising data from a range of global studies, we provide the first compre-hensive evaluation of the hydrological role played by rock glaciers. Weevaluate hydrological significanceover a range of temporal and spatial scales, alongsidethe complex multiple hydrological processes with which rock glaciers can interact diurnally, seasonally, annually, decadally and both at local and regional extents.We report that although no global-extent, complete inventory for rock glaciers exists currently, recent research efforts have greatly elaborated spatialcoverage.Using these research papers,we synthe-sise information on rock glacier spatial distribution, morphometric characteristics, surface and subsurface features, ice-storage and hydrological flow dynamics, water chemistry, and future resilience, from which we provide the first comprehensive evaluation of their hydrological contribution. We identify and discuss long-, intermediate-and short-term timescales for rock glacier storage, allowing a more balanced assess-ment of the contrasting perspectives regarding the relative significance of rock glacier-derived hydrological contributions compared to other water sources.We show that further empirical observations are required to gain a deeper hydrological understanding of rock glaciers, in terms of(i) their genesis and geomorpho-logical dynamics (ii) total ice/water volume; (iii) water discharge; and (iv) water quality. Lastly, we hypothesisethat at decadal and longer timescales, under future climate warming, degradation of ice within rock glaciers may represent an increasing hydrological contribution to downstream regions, and thus in-creased hydrological significance while rock glacier water stores persist.Royal Geographical SocietyNatural Environment Research Council (NERC
    • 

    corecore