13 research outputs found

    Synthesising dispersed powders of CoZn ferrites for microwave absorption

    Get PDF
    An important task of chemical materials science is to obtain materials with set parameters and to provide a reliable prediction of their properties. At the moment, an important task is to develop promising absorbing coatings based on dispersed magnetic materials. To ensure more effective use of dispersed powders of cobalt-zinc ferrite for fillers absorbing microwave radiation, we studied the changes in their magnetic properties and morphology depending on the conditions of the sol-gel synthesis. In our study, we synthesised Co0.65Zn0.35Fe2O4 ferrite powders of various degree of dispersion using the sol-gel method. The samples were analysed using X-ray diffractometry. The microstructure and the morphology of the nanoparticles were studied by means of scanning electron microscopy. The ratio of the concentration of metal atoms in ferrite powders and the features of their distribution on the surface of the particles were determined by energy dispersive X-ray spectroscopy. Magnetometry was used to determine the specific saturation magnetization and the coercive force. The study demonstrated that the main factor resulting in low values of the saturation magnetization of the cobalt ferrite nanopaticles is the formation of the magnetic dead layer on their surface. This layer is formed due to a number of factors including noncollinearity of spins, disordering of cations, defectiveness, amorphous state, and the difference in the composition occurring because the processes of reciprocal diffusion of cations during and the formation of the spinel structure during the synthesis are not complete. The study determined the ways to reduce the size of the inactive magnetic layer by controlling the parameters of the solgel synthesis in order to find effective methods of obtaining ferrite powders with increased magnetization, degree of crystallinity and the intermediate particles size between a superparamagnetic and a multidomain state. Such materials can be used as fillers for coating absorbing microwave radiation

    Memory Effect: How the Initial Structure of Nanoparticles Affects the Performance of De-Alloyed PtCu Electrocatalysts?

    No full text
    An important feature of this research is the investigation of the de-alloyed catalysts based on the nanoparticles with a simple structure (alloy) and a complex structure (gradient). The resulting samples exhibit the 2–4 times higher mass activity in the ORR compared with the commercial Pt/C. The novelty of this study is due to the application of the express-electrochemical experiment to register the trend of changes in the ORR activity caused by rearranging the structure of bimetallic nanoparticles. The state-of-the-art protocol makes it possible to establish the dependence of properties of the de-alloyed catalysts on the nanoparticles’ structure obtained at the stage of the material’s synthesis. The study shows the possibility of determining the rate of the ongoing reorganization of bimetallic nanoparticles with different architectures. The PtCu/C electrocatalysts for proton-exchange membrane fuel cells presented in this work are commercially promising in terms of both the high functional characteristics and the production by facile one-pot methods

    Memory Effect: How the Initial Structure of Nanoparticles Affects the Performance of De-Alloyed PtCu Electrocatalysts?

    No full text
    An important feature of this research is the investigation of the de-alloyed catalysts based on the nanoparticles with a simple structure (alloy) and a complex structure (gradient). The resulting samples exhibit the 2–4 times higher mass activity in the ORR compared with the commercial Pt/C. The novelty of this study is due to the application of the express-electrochemical experiment to register the trend of changes in the ORR activity caused by rearranging the structure of bimetallic nanoparticles. The state-of-the-art protocol makes it possible to establish the dependence of properties of the de-alloyed catalysts on the nanoparticles’ structure obtained at the stage of the material’s synthesis. The study shows the possibility of determining the rate of the ongoing reorganization of bimetallic nanoparticles with different architectures. The PtCu/C electrocatalysts for proton-exchange membrane fuel cells presented in this work are commercially promising in terms of both the high functional characteristics and the production by facile one-pot methods

    High Gas Sensitivity to Nitrogen Dioxide of Nanocomposite ZnO-SnO2 Films Activated by a Surface Electric Field

    No full text
    Gas sensors based on the multi-sensor platform MSP 632, with thin nanocomposite films based on tin dioxide with a low content of zinc oxide (0.5–5 mol.%), were synthesized using a solid-phase low-temperature pyrolysis technique. The resulting gas-sensitive ZnO-SnO2 films were comprehensively studied by atomic force microscopy, Kelvin probe force microscopy, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, scanning transmission electron microscopy, energy dispersive X-ray spectrometry, and X-ray photoelectron spectroscopy. The obtained films are up to 200 nm thick and consist of ZnO-SnO2 nanocomposites, with ZnO and SnO2 crystallite sizes of 4–30 nm. Measurements of ZnO-SnO2 films containing 0.5 mol.% ZnO showed the existence of large values of surface potential, up to 1800 mV, leading to the formation of a strong surface electric field with a strength of up to 2 × 107 V/cm. The presence of a strong surface electric field leads to the best gas-sensitive properties: the sensor’s responsivity is between two and nine times higher than that of sensors based on ZnO-SnO2 films of other compositions. A study of characteristics sensitive to NO2 (0.1–50 ppm) showed that gas sensors based on the ZnO-SnO2 film demonstrated a high sensitivity to NO2 with a concentration of 0.1 ppm at an operating temperature of 200 °C

    4th ECFA / DESY Workshop on Physics and Detectors for a 90-GeV to 800-GeV Linear e+ee^{+}e^{-} Collider

    No full text

    ILC Reference Design Report Volume 1 - Executive Summary

    No full text
    The International Linear Collider (ILC) is a 200-500 GeV center-of-mass high-luminosity linear electron-positron collider, based on 1.3 GHz superconducting radio-frequency (SCRF) accelerating cavities. The ILC has a total footprint of about 31 km and is designed for a peak luminosity of 2x10^34 cm^-2s^-1. This report is the Executive Summary (Volume I) of the four volume Reference Design Report. It gives an overview of the physics at the ILC, the accelerator design and value estimate, the detector concepts, and the next steps towards project realization.The International Linear Collider (ILC) is a 200-500 GeV center-of-mass high-luminosity linear electron-positron collider, based on 1.3 GHz superconducting radio-frequency (SCRF) accelerating cavities. The ILC has a total footprint of about 31 km and is designed for a peak luminosity of 2x10^34 cm^-2s^-1. This report is the Executive Summary (Volume I) of the four volume Reference Design Report. It gives an overview of the physics at the ILC, the accelerator design and value estimate, the detector concepts, and the next steps towards project realization
    corecore