6 research outputs found

    Surface- and Tip-Enhanced Raman Scattering by CdSe Nanocrystals on Plasmonic Substrates

    No full text
    This work presents an overview of the latest results and new data on the optical response from spherical CdSe nanocrystals (NCs) obtained using surface-enhanced Raman scattering (SERS) and tip-enhanced Raman scattering (TERS). SERS is based on the enhancement of the phonon response from nanoobjects such as molecules or inorganic nanostructures placed on metal nanostructured substrates with a localized surface plasmon resonance (LSPR). A drastic SERS enhancement for optical phonons in semiconductor nanostructures can be achieved by a proper choice of the plasmonic substrate, for which the LSPR energy coincides with the laser excitation energy. The resonant enhancement of the optical response makes it possible to detect mono- and submonolayer coatings of CdSe NCs. The combination of Raman scattering with atomic force microscopy (AFM) using a metallized probe represents the basis of TERS from semiconductor nanostructures and makes it possible to investigate their phonon properties with nanoscale spatial resolution. Gap-mode TERS provides further enhancement of Raman scattering by optical phonon modes of CdSe NCs with nanometer spatial resolution due to the highly localized electric field in the gap between the metal AFM tip and a plasmonic substrate and opens new pathways for the optical characterization of single semiconductor nanostructures and for revealing details of their phonon spectrum at the nanometer scale

    Surface- and Tip-Enhanced Raman Scattering by CdSe Nanocrystals on Plasmonic Substrates

    No full text
    This work presents an overview of the latest results and new data on the optical response from spherical CdSe nanocrystals (NCs) obtained using surface-enhanced Raman scattering (SERS) and tip-enhanced Raman scattering (TERS). SERS is based on the enhancement of the phonon response from nanoobjects such as molecules or inorganic nanostructures placed on metal nanostructured substrates with a localized surface plasmon resonance (LSPR). A drastic SERS enhancement for optical phonons in semiconductor nanostructures can be achieved by a proper choice of the plasmonic substrate, for which the LSPR energy coincides with the laser excitation energy. The resonant enhancement of the optical response makes it possible to detect mono- and submonolayer coatings of CdSe NCs. The combination of Raman scattering with atomic force microscopy (AFM) using a metallized probe represents the basis of TERS from semiconductor nanostructures and makes it possible to investigate their phonon properties with nanoscale spatial resolution. Gap-mode TERS provides further enhancement of Raman scattering by optical phonon modes of CdSe NCs with nanometer spatial resolution due to the highly localized electric field in the gap between the metal AFM tip and a plasmonic substrate and opens new pathways for the optical characterization of single semiconductor nanostructures and for revealing details of their phonon spectrum at the nanometer scale

    Localized surface plasmons in structures with linear Au nanoantennas on a SiO2/Si surface

    No full text
    The study of infrared absorption by linear gold nanoantennas fabricated on a Si surface with underlying SiO2 layers of various thicknesses allowed the penetration depth of localized surface plasmons into SiO2 to be determined. The value of the penetration depth derived experimentally (20 ± 10 nm) corresponds to that obtained from electromagnetic simulations (12.9–30.0 nm). Coupling between plasmonic excitations of gold nanoantennas and optical phonons in SiO2 leads to the appearance of new plasmon–phonon modes observed in the infrared transmission spectra the frequencies of which are well predicted by the simulations

    Nanoantenna-assisted plasmonic enhancement of IR absorption of vibrational modes of organic molecules

    No full text
    Nanoantenna-assisted plasmonic enhancement of IR absorption and Raman scattering was employed for studying the vibrational modes in organic molecules. Ultrathin cobalt phthalocyanine films (3 nm) were deposited on Au nanoantenna arrays with specified structural parameters. The deposited organic films reveal the enhancement of both Raman scattering and IR absorption vibrational modes. To extend the possibility of implementing surface-enhanced infrared absorption (SEIRA) for biological applications, the detection and analysis of the steroid hormone cortisol was demonstrated

    Nanoantenna structures for the detection of phonons in nanocrystals

    No full text
    We report a study of the infrared response by localized surface plasmon resonance (LSPR) modes in gold micro- and nanoantenna arrays with various morphologies and surface-enhanced infrared absorption (SEIRA) by optical phonons of semiconductor nanocrystals (NCs) deposited on the arrays. The arrays of nano- and microantennas fabricated with nano- and photolithography reveal infrared-active LSPR modes of energy ranging from the mid to far-infrared that allow the IR response from very low concentrations of organic and inorganic materials deposited onto the arrays to be analyzed. The Langmuir–Blodgett technology was used for homogeneous deposition of CdSe, CdS, and PbS NC monolayers on the antenna arrays. The structural parameters of the arrays were confirmed by scanning electron microscopy. 3D full-wave electromagnetic simulations of the electromagnetic field distribution around the micro- and nanoantennas were employed to realize the maximal SEIRA enhancement for structural parameters of the arrays whereby the LSPR and the NC optical phonon energies coincide. The SEIRA experiments quantitatively confirmed the computational results. The maximum SEIRA enhancement was observed for linear nanoantennas with optimized structural parameters determined from the electromagnetic simulations. The frequency position of the feature’s absorption seen in the SEIRA response evidences that the NC surface and transverse optical phonons are activated in the infrared spectra

    Ultrafast Infrared Laser Crystallization of Amorphous Ge Films on Glass Substrates

    No full text
    Amorphous germanium films on nonrefractory glass substrates were annealed by ultrashort near-infrared (1030 nm, 1.4 ps) and mid-infrared (1500 nm, 70 fs) laser pulses. Crystallization of germanium irradiated at a laser energy density (fluence) range from 25 to 400 mJ/cm2 under single-shot and multishot conditions was investigated using Raman spectroscopy. The dependence of the fraction of the crystalline phase on the fluence was obtained for picosecond and femtosecond laser annealing. The regimes of almost complete crystallization of germanium films over the entire thickness were obtained (from the analysis of Raman spectra with excitation of 785 nm laser). The possibility of scanning laser processing is shown, which can be used to create films of micro- and nanocrystalline germanium on flexible substrates
    corecore