6 research outputs found

    Forced Vibration of a Timoshenko Beam Subjected to Stationary and Moving Loads Using the Modal Analysis Method

    Get PDF
    The modal analysis method (MAM) is very useful for obtaining the dynamic responses of a structure in analytical closed forms. In order to use the MAM, accurate information is needed on the natural frequencies, mode shapes, and orthogonality of the mode shapes a priori. A thorough literature survey reveals that the necessary information reported in the existing literature is sometimes very limited or incomplete, even for simple beam models such as Timoshenko beams. Thus, we present complete information on the natural frequencies, three types of mode shapes, and the orthogonality of the mode shapes for simply supported Timoshenko beams. Based on this information, we use the MAM to derive the forced vibration responses of a simply supported Timoshenko beam subjected to arbitrary initial conditions and to stationary or moving loads (a point transverse force and a point bending moment) in analytical closed form. We then conduct numerical studies to investigate the effects of each type of mode shape on the long-term dynamic responses (vibrations), the short-term dynamic responses (waves), and the deformed shapes of an example Timoshenko beam subjected to stationary or moving point loads

    Frequency Domain Spectral Element Model for the Vibration Analysis of a Thin Plate with Arbitrary Boundary Conditions

    Get PDF
    We propose a new spectral element model for finite rectangular plate elements with arbitrary boundary conditions. The new spectral element model is developed by modifying the boundary splitting method used in our previous study so that the four corner nodes of a finite rectangular plate element become active. Thus, the new spectral element model can be applied to any finite rectangular plate element with arbitrary boundary conditions, while the spectral element model introduced in the our previous study is valid only for finite rectangular plate elements with four fixed corner nodes. The new spectral element model can be used as a generic finite element model because it can be assembled in any plate direction. The accuracy and computational efficiency of the new spectral element model are validated by a comparison with exact solutions, solutions obtained by the standard finite element method, and solutions from the commercial finite element analysis package ANSYS

    Transverse Vibration and Waves in a Membrane: Frequency Domain Spectral Element Modeling and Analysis

    Full text link
    Although the spectral element method (SEM) has been well recognized as an exact continuum element method, its application has been limited mostly to one-dimensional (1D) structures, or plates that can be transformed into 1D-like problems by assuming the displacements in one direction of the plate in terms of known functions. We propose a spectral element model for the transverse vibration of a finite membrane subjected to arbitrary boundary conditions. The proposed model is developed by using the boundary splitting method and the waveguide FEM-based spectral super element method in combination. The performance of the proposed spectral element model is numerically validated by comparison with exact solutions and solutions using the standard finite element method (FEM)

    Fracture Toughness Characteristics of High-Manganese Austenitic Steel Plate for Application in a Liquefied Natural Gas Carrier

    Full text link
    High-manganese austenitic steel was developed to improve the fracture toughness and safety of steel under cryogenic temperatures, and its austenite structure was formed by increasing the Mn content. The developed high-manganese austenitic steel was alloyed with austenite-stabilizing elements (e.g., C, Mn, and Ni) to increase cryogenic toughness. It was demonstrated that 30 mm thickness high-manganese austenitic steel, as well as joints welded with this steel, had a sufficiently higher fracture toughness than the required toughness values evaluated under the postulated stress conditions. High-manganese austenitic steel can be applied to large offshore and onshore LNG storage and fuel tanks located in areas experiencing cryogenic conditions. Generally, fracture toughness decreases at lower temperatures; therefore, cryogenic steel requires high fracture toughness to prevent unstable fractures. Brittle fracture initiation and arrest tests were performed using 30 mm thickness high-manganese austenitic steel and SAW joints. The ductile fracture resistance of the weld joints (weld metal, fusion line, fusion line + 2 mm) was investigated using the R-curve because a crack in the weld joint tends to deviate into the weld metal in the case of undermatched joints. The developed high-manganese austenitic steel showed little possibility of brittle fracture and a remarkably unstable ductile fracture toughness

    Fracture Toughness Characteristics of High-Manganese Austenitic Steel Plate for Application in a Liquefied Natural Gas Carrier

    Full text link
    High-manganese austenitic steel was developed to improve the fracture toughness and safety of steel under cryogenic temperatures, and its austenite structure was formed by increasing the Mn content. The developed high-manganese austenitic steel was alloyed with austenite-stabilizing elements (e.g., C, Mn, and Ni) to increase cryogenic toughness. It was demonstrated that 30 mm thickness high-manganese austenitic steel, as well as joints welded with this steel, had a sufficiently higher fracture toughness than the required toughness values evaluated under the postulated stress conditions. High-manganese austenitic steel can be applied to large offshore and onshore LNG storage and fuel tanks located in areas experiencing cryogenic conditions. Generally, fracture toughness decreases at lower temperatures; therefore, cryogenic steel requires high fracture toughness to prevent unstable fractures. Brittle fracture initiation and arrest tests were performed using 30 mm thickness high-manganese austenitic steel and SAW joints. The ductile fracture resistance of the weld joints (weld metal, fusion line, fusion line + 2 mm) was investigated using the R-curve because a crack in the weld joint tends to deviate into the weld metal in the case of undermatched joints. The developed high-manganese austenitic steel showed little possibility of brittle fracture and a remarkably unstable ductile fracture toughness
    corecore