8 research outputs found

    Serological fingerprints link antiviral activity of therapeutic antibodies to affinity and concentration

    Full text link
    The effectiveness of therapeutic monoclonal antibodies (mAbs) against variants of the SARS-CoV-2 virus is highly variable. As target recognition of mAbs relies on tight binding affinity, we assessed the affinities of five therapeutic mAbs to the receptor binding domain (RBD) of wild type (A), Delta (B.1.617.2), and Omicron BA.1 SARS-CoV-2 (B.1.1.529.1) spike using microfluidic diffusional sizing (MDS). Four therapeutic mAbs showed strongly reduced affinity to Omicron BA.1 RBD, whereas one (sotrovimab) was less impacted. These affinity reductions correlate with reduced antiviral activities suggesting that affinity could serve as a rapid indicator for activity before time-consuming virus neutralization assays are performed. We also compared the same mAbs to serological fingerprints (affinity and concentration) obtained by MDS of antibodies in sera of 65 convalescent individuals. The affinities of the therapeutic mAbs to wild type and Delta RBD were similar to the serum antibody response, indicating high antiviral activities. For Omicron BA.1 RBD, only sotrovimab retained affinities within the range of the serum antibody response, in agreement with high antiviral activity. These results suggest that serological fingerprints provide a route to evaluating affinity and antiviral activity of mAb drugs and could guide the development of new therapeutics

    Both COVID-19 infection and vaccination induce high-affinity cross-clade responses to SARS-CoV-2 variants

    Full text link
    The B.1.1.529 (omicron) variant has rapidly supplanted most other SARS-CoV-2 variants. Using microfluidics-based antibody affinity profiling (MAAP), we have characterized affinity and IgG concentration in the plasma of 39 individuals with multiple trajectories of SARS-CoV-2 infection and/or vaccination. Antibody affinity was similar against the wild-type, delta, and omicron variants (KA ranges: 122 ± 155, 159 ± 148, 211 ± 307 μM-1, respectively), indicating a surprisingly broad and mature cross-clade immune response. Postinfectious and vaccinated subjects showed different IgG profiles, with IgG3 (p-value = 0.002) against spike being more prominent in the former group. Lastly, we found that the ELISA titers correlated linearly with measured concentrations (R = 0.72) but not with affinity (R = 0.29). These findings suggest that the wild-type and delta spike induce a polyclonal immune response capable of binding the omicron spike with similar affinity. Changes in titers were primarily driven by antibody concentration, suggesting that B-cell expansion, rather than affinity maturation, dominated the response after infection or vaccination

    Microfluidic characterisation reveals broad range of SARS-CoV-2 antibody affinity in human plasma.

    Get PDF
    Funder: Herchel Smith FundFunder: St John’s College CambridgeFunder: Centre for Misfolding Diseases, CambridgeFunder: Swiss FCS and the Forschungskredit of the University of ZurichFunder: Frances and Augustus Newman FoundationFunder: BBRSCFunder: NOMIS FoundationThe clinical outcome of SARS-CoV-2 infections, which can range from asymptomatic to lethal, is crucially shaped by the concentration of antiviral antibodies and by their affinity to their targets. However, the affinity of polyclonal antibody responses in plasma is difficult to measure. Here we used microfluidic antibody affinity profiling (MAAP) to determine the aggregate affinities and concentrations of anti-SARS-CoV-2 antibodies in plasma samples of 42 seropositive individuals, 19 of which were healthy donors, 20 displayed mild symptoms, and 3 were critically ill. We found that dissociation constants, K d, of anti-receptor-binding domain antibodies spanned 2.5 orders of magnitude from sub-nanomolar to 43 nM. Using MAAP we found that antibodies of seropositive individuals induced the dissociation of pre-formed spike-ACE2 receptor complexes, which indicates that MAAP can be adapted as a complementary receptor competition assay. By comparison with cytopathic effect-based neutralisation assays, we show that MAAP can reliably predict the cellular neutralisation ability of sera, which may be an important consideration when selecting the most effective samples for therapeutic plasmapheresis and tracking the success of vaccinations

    Microfluidic characterisation reveals broad range of SARS-CoV-2 antibody affinity in human plasma

    Full text link
    The clinical outcome of SARS-CoV-2 infections, which can range from asymptomatic to lethal, is crucially shaped by the concentration of antiviral antibodies and by their affinity to their targets. However, the affinity of polyclonal antibody responses in plasma is difficult to measure. Here we used microfluidic antibody affinity profiling (MAAP) to determine the aggregate affinities and concentrations of anti–SARS-CoV-2 antibodies in plasma samples of 42 seropositive individuals, 19 of which were healthy donors, 20 displayed mild symptoms, and 3 were critically ill. We found that dissociation constants, Kd, of anti–receptor-binding domain antibodies spanned 2.5 orders of magnitude from sub-nanomolar to 43 nM. Using MAAP we found that antibodies of seropositive individuals induced the dissociation of pre-formed spike-ACE2 receptor complexes, which indicates that MAAP can be adapted as a complementary receptor competition assay. By comparison with cytopathic effect–based neutralisation assays, we show that MAAP can reliably predict the cellular neutralisation ability of sera, which may be an important consideration when selecting the most effective samples for therapeutic plasmapheresis and tracking the success of vaccinations

    Antibody Affinity Governs the Inhibition of SARS-CoV-2 Spike/ACE2 Binding in Patient Serum

    Full text link
    The humoral immune response plays a key role in suppressing the pathogenesis of SARS-CoV-2. The molecular determinants underlying the neutralization of the virus remain, however, incompletely understood. Here, we show that the ability of antibodies to disrupt the binding of the viral spike protein to the angiotensin-converting enzyme 2 (ACE2) receptor on the cell, the key molecular event initiating SARS-CoV-2 entry into host cells, is controlled by the affinity of these antibodies to the viral antigen. By using microfluidic antibody-affinity profiling, we were able to quantify the serum-antibody mediated inhibition of ACE2–spike binding in two SARS-CoV-2 seropositive individuals. Measurements to determine the affinity, concentration, and neutralization potential of antibodies were performed directly in human serum. Using this approach, we demonstrate that the level of inhibition in both samples can be quantitatively described using the dissociation constants (KD) of the binary interactions between the ACE2 receptor and the spike protein as well as the spike protein and the neutralizing antibody. These experiments represent a new type of in-solution receptor binding competition assay, which has further potential applications, ranging from decisions on donor selection for convalescent plasma therapy, to identification of lead candidates in therapeutic antibody development, and vaccine development

    Microfluidic Antibody Affinity Profiling Reveals the Role of Memory Reactivation and Cross-Reactivity in the Defense Against SARS-CoV-2

    Full text link
    Recent efforts in understanding the course and severity of SARS-CoV-2 infections have highlighted both potentially beneficial and detrimental effects of cross-reactive antibodies derived from memory immunity. Specifically, due to a significant degree of sequence similarity between SARS-CoV-2 and other members of the coronavirus family, memory B-cells that emerged from previous infections with endemic human coronaviruses (HCoVs) could be reactivated upon encountering the newly emerged SARS-CoV-2, thus prompting the production of cross-reactive antibodies. Determining the affinity and concentration of these potentially cross-reactive antibodies to the new SARS-CoV-2 antigens is therefore particularly important when assessing both existing immunity against common HCoVs and adverse effects like antibody-dependent enhancement (ADE) in COVID-19. However, these two fundamental parameters cannot easily be disentangled by surface-based assays like enzyme-linked immunosorbent assays (ELISAs), which are routinely used to assess cross-reactivity. Here, we have used microfluidic antibody affinity profiling (MAAP) to quantitatively evaluate the humoral immune response in COVID-19 convalescent patients by determining both antibody affinity and concentration against spike antigens of SARS-CoV-2 directly in nine convalescent COVID-19 patient and three pre-pandemic sera that were seropositive for common HCoVs. All 12 sera contained low concentrations of high-affinity antibodies against spike antigens of HCoV-NL63 and HCoV-HKU1, indicative of past exposure to these pathogens, while the affinity against the SARS-CoV-2 spike protein was lower. These results suggest that cross-reactivity as a consequence of memory reactivation upon an acute SARS-CoV-2 infection may not be a significant factor in generating immunity against SARS-CoV-2

    Both COVID-19 infection and vaccination induce high-affinity cross-clade responses to SARS-CoV-2 variants.

    No full text
    The B.1.1.529 (omicron) variant has rapidly supplanted most other SARS-CoV-2 variants. Using microfluidics-based antibody affinity profiling (MAAP), we have characterized affinity and IgG concentration in the plasma of 39 individuals with multiple trajectories of SARS-CoV-2 infection and/or vaccination. Antibody affinity was similar against the wild-type, delta, and omicron variants (K A ranges: 122 ± 155, 159 ± 148, 211 ± 307 μM-1, respectively), indicating a surprisingly broad and mature cross-clade immune response. Postinfectious and vaccinated subjects showed different IgG profiles, with IgG3 (p-value = 0.002) against spike being more prominent in the former group. Lastly, we found that the ELISA titers correlated linearly with measured concentrations (R = 0.72) but not with affinity (R = 0.29). These findings suggest that the wild-type and delta spike induce a polyclonal immune response capable of binding the omicron spike with similar affinity. Changes in titers were primarily driven by antibody concentration, suggesting that B-cell expansion, rather than affinity maturation, dominated the response after infection or vaccination
    corecore