11 research outputs found

    Amphiphilic Poly(dimethylsiloxane-ethylene-propylene oxide)-polyisocyanurate Cross-Linked Block Copolymers in a Membrane Gas Separation

    No full text
    Amphiphilic poly(dimethylsiloxane-ethylene-propylene oxide)-polyisocyanurate cross-linked block copolymers based on triblock copolymers of propylene and ethylene oxides with terminal potassium-alcoholate groups (PPEG), octamethylcyclotetrasiloxane (D4) and 2,4-toluene diisocyanate (TDI) were synthesized and investigated. In the first stage of the polymerization process, a multiblock copolymer (MBC) was previously synthesized by polyaddition of D4 to PPEG. The usage of the amphiphilic branched silica derivatives associated with oligomeric medium (ASiP) leads to the structuring of block copolymers via the transetherification reaction of the terminal silanol groups of MBC with ASiP. The molar ratio of PPEG, D4, and TDI, where the polymer chains are packed in the “core-shell” supramolecular structure with microphase separation of the polyoxyethylene, polyoxypropylene and polydimethylsiloxane segments as the shell, was established. Polyisocyanurates build the “core” of the described macromolecular structure. The obtained polymers were studied as membrane materials for the separation of gas mixtures CO2/CH4 and CO2/N2. It was found that obtained polymers are promising as highly selective and productive membrane materials for the separation of gas mixtures containing CO2, CH4 and N2

    Optically Transparent Polydimethylsiloxane-Ethylene Oxide-Propylene Oxide Multiblock Copolymers Crosslinked with Isocyanurates as Organic Compound Sorbents

    No full text
    New crosslinked (polydimethylsiloxane-ethylene-propylene oxide)-polyisocyanurate multiblock copolymers (MBCs) were synthesized, and their supramolecular structure and sorption characteristics were studied. It was found that the interaction of PPEG and D4 leads to polyaddition of D4 initiated by potassium-alcoholate groups. The use of the amphiphilic silica derivatives associated in an oligomeric medium (ASiPs) leads to structuring of the MBC due to the transetherification reaction of the terminal silanol groups of the MBC with ASiPs. It was established that the supramolecular structure of an MBC is built according to the “core-shell” structure. The obtained polymers were tested as sorbents for the development of new methods for the concentration and determination of inorganic compounds. The efficiency of sorption of reagents increased with an increase in the “thickness” of the polydimethylsiloxane component of the “shell” and with a decrease in the size of the polyisocyanurate “core”. The use of the obtained polymers as adsorbents of organic reagents is promising for increasing the efficiency of field methods of chemical testing and inorganic analysis, including the determination of the elemental composition and the detection of traces of contamination

    Molecular Simulation of Pervaporation on Polyurethane Membranes

    No full text
    This article discusses a molecular simulation of membrane processes for the separation of liquid mixtures during pervaporation. A method for simulating the structure of polyurethane membranes was developed. The method was based on the known mechanisms of the formation of macromolecules from constituent monomers. For the formation of a chemical bond between the monomers, values of the parameters of the potentials of intermolecular interactions were set so that bonds were formed only between the corresponding atoms. The algorithm was validated to produce polymer films from diphenylmethane diisocyanate (MDI) and amino ethers of boric acid (AEBA). The polymer film obtained according to the developed algorithm was used to study the adsorption of ethanol and water. The concentration distributions of the components inside the polymer film were obtained for films of various thicknesses. Modifications of the DCV-GCMD method were proposed for the molecular simulation of pervaporation. The algorithm was based on maintaining a constant density of the mixture in the control volume. After the molecules were added to the control volume, thermodynamic equilibrium was established. During this process, molecules moved only in the control volume, while the rest of the molecules were fixed. The proposed algorithm was used to calculate the flows of water and ethanol through the polymer film

    Molecular Simulation of Pervaporation on Polyurethane Membranes

    No full text
    This article discusses a molecular simulation of membrane processes for the separation of liquid mixtures during pervaporation. A method for simulating the structure of polyurethane membranes was developed. The method was based on the known mechanisms of the formation of macromolecules from constituent monomers. For the formation of a chemical bond between the monomers, values of the parameters of the potentials of intermolecular interactions were set so that bonds were formed only between the corresponding atoms. The algorithm was validated to produce polymer films from diphenylmethane diisocyanate (MDI) and amino ethers of boric acid (AEBA). The polymer film obtained according to the developed algorithm was used to study the adsorption of ethanol and water. The concentration distributions of the components inside the polymer film were obtained for films of various thicknesses. Modifications of the DCV-GCMD method were proposed for the molecular simulation of pervaporation. The algorithm was based on maintaining a constant density of the mixture in the control volume. After the molecules were added to the control volume, thermodynamic equilibrium was established. During this process, molecules moved only in the control volume, while the rest of the molecules were fixed. The proposed algorithm was used to calculate the flows of water and ethanol through the polymer film

    Amino Ethers of Ortho-Phosphoric Acid as Extragents for Ethanol Dehydration

    No full text
    Amino ethers of ortho-phosphoric acid prepared using triethanolamine; ortho-phosphoric acid; polyoxyethylene glycol, diethylene glycol, triethylene glycol and glycerol (AEPA-DEG/TEG/Gl) were investigated as extractants for the separation of aqueous ethanol solutions by extractive distillation. Using the method of open evaporation, the influence of the molecular structure of AEPA-DEG/TEG/Gl on the conditions of vapor–liquid equilibrium in ethanol–water solutions was studied. It has been shown that the addition of AEPA-DEG/TEG/Gl removes the azeotropic point. At the same time, the observed effect turned out to be significantly higher in comparison with the use of pure glycerol or glycols for these purposes. The UNIFAC model was used to calculate the activity coefficients in a three-component ethanol–water–AEPA-DEG/TEG/Gl mixture. Within the framework of this model, a division of AEPA-DEG/TEG/Gl molecules into group components is proposed. Previously unknown parameters of the groups PO–CH, PO–CH2, PO–OCH2, PO–NHCH2, PO–OH, and PO–H2O were determined from our own and published experimental data. The concentration dependences of the density and dynamic viscosity of AEPA-Gl aqueous solutions have been experimentally measured. Experimental studies of the extractive distillation of ethanol–water using AEPA-Gl as an extractant have been carried out in a column with bubble cap plates and a packing, and its high efficiency has been established

    Organoboron Ionic Liquids as Extractants for Distillation Process of Binary Ethanol + Water Mixtures

    No full text
    Aminoethers of boric acid, which are organoboron ionic liquids, were synthesized by using boric acid, triethanolamine, and triethylene glycol/diethylene glycol. Due to the formation of intermolecular complexes of borates, the structure of aminoethers of boric acid contains ion pairs separated in space, giving these compounds the properties inherent to ionic liquids. It is established that the thermal stability of aminoethers under normal atmospheric conditions increases with an increase in the size of the glycol. According to measurements of fast scanning calorimetry, density, dynamic viscosity, and electrical conductivity, water is involved in the structural organization of aminoethers of boric acid. The impact of the most thermostable organoboron ionic liquids on the phase equilibrium conditions of the vapor–liquid azeotropic ethanol–water mixture is studied. It is shown that the presence of these substances leads to increase in the relative volatility of ethanol. In general, the magnitude of this effect is at the level shown by imidazole ionic liquids, which provide high selectivity in the separation of aqueous alcohol solutions. A large separation factor, high resistance to thermal oxidative degradation processes, accompanied by low cost start reagents, make aminoethers of boric acid on the basis of triethylene glycol a potentially effective extractant for the extractive distillation of water–alcohol mixtures

    Catalytic Etherification of ortho-Phosphoric Acid for the Synthesis of Polyurethane Ionomer Films

    No full text
    The etherification reaction of ortho-phosphoric acid (OPA) with polyoxypropylene glycol in the presence of tertiary amines was studied. The reaction conditions promoting the catalytic activity of triethanolamine (TEOA) and triethylamine (TEA) in the low-temperature etherification of OPA were established. The catalytic activity of TEOA and TEA in the etherification reaction of phosphoric acid is explained by the hydrophobic-hydrophilic interactions of TEA with PPG, leading, as a result of collective interactions, to a specific orientation of polyoxypropylene chains around the tertiary amine. When using triethylamine, complete etherification of OPA occurs, accompanied by the formation of branched OPA ethers terminated by hydroxyl groups and even the formation of polyphosphate structures. When triethanolamine is used as a catalyst, incomplete etherification of OPA with polyoxypropylene glycol occurs and as a result, part of the phosphate anions remain unreacted in the composition of the resulting aminoethers of ortho-phosphoric acid (AEPA). In this case, the hydroxyl groups of triethanolamine are completely involved in the OPA etherification reaction, but the catalytic activity of the tertiary amine weakens due to a decrease in its availability in the branched structure of AEPA. The kinetics of the etherification reaction of OPA by polyoxypropylene glycol catalyzed by TEOA and TEA were studied. It was shown that triethanolamine occupies a central position in the AEPA structure. The physico-mechanical and thermomechanical properties of polyurethane ionomer films obtained on the basis of AEPA synthesized in a wide temperature range were studied

    Organosilica-Modified Multiblock Copolymers for Membrane Gas Separation

    No full text
    Organosubstituted silica derivatives were synthesized and investigated as modifiers of block copolymers based on macroinitiator and 2,4-toluene diisocyanate. A peculiarity of the modified block copolymers is the existence in their structure of coplanar rigid polyisocyanate blocks of acetal nature (O-polyisocyanates). Organosubstituted silica derivatives have a non-additive effect on high-temperature relaxation and α-transitions of modified polymers and exhibit the ability to influence the supramolecular structure of block copolymers. The use of the developed modifiers leads to a change in the gas transport properties of block copolymers. The increase of the permeability coefficients is due to the increase of the diffusion coefficients. At the same time, the gas solubility coefficients do not change. An increase in the ideal selectivity for a number of gas pairs is observed. An increase in the selectivity for the CO2/N2 gas pair (from 25 to 39) by 1.5 times demonstrates the promising use of this material for flue gases separation

    Pervaporation Polyurethane Membranes Based on Hyperbranched Organoboron Polyols

    No full text
    On the basis of aminoethers of boric acid (AEBA), polyurethane vapor-permeable and pervaporative membranes were obtained. AEBAs, the structure of which is modified by bulk adducts (EM) of diphenylol propane diglycidyl ether and ethanolamine, were studied. It turned out that AEBA exists in the form of clusters, and the use of EM as a result of partial destruction of associative interactions leads to a significant decrease in the size of AEBA-EM particles and their viscosity compared to unmodified AEBA. The introduction of EM into the composition of AEBA leads to a threefold increase in the vapor permeability of polyurethanes obtained on their basis. The observed effect is explained by the fact that a decrease in the size of clusters leads to loosening of their dense packing. Areas of clustering due to associative interactions of hydroxyl groups, together with the hydrophilic nature of polyoxyethylene glycol, create channels through which water molecules can penetrate. The increase in vapor permeability is accompanied by a multiple increase in the permeability coefficients in the pervaporative dehydration of isopropanol

    Synthesis and Study of Gas Transport Properties of Polymers Based on Macroinitiators and 2,4-Toluene Diisocyanate

    No full text
    Nowadays, block copolymers hold great promise for the design of novel membranes to be applied for the membrane gas separation. In this regard, microporous block copolymers based on a macroinitiator with an anionic nature, such as potassium-substituted block copolymers of propylene oxide and ethylene oxide (PPEG) and 2,4-toluene diisocyanate (TDI), were obtained and investigated as effective gas separation membranes. The key element of the macromolecular structure that determines the supramolecular organization of the studied polymers is the coplanar blocks of polyisocyanates with an acetal nature (O-polyisocyanate). In the present research, the influence of the content of peripheral polyoxyethylene (POE) blocks in PPEG on the supramolecular structure processes and gas transport characteristics of the obtained polymers based on PPEG and TDI was investigated. According to the study of polymers if the POE block content is 15 wt %, the polyoxypropylene segments are located in the internal cavity of voids formed by O-polyisocyanate blocks. When the POE block content is 30 wt %, the flexible chain component forms its own microphase outside the segregation zone of the rigid O-polyisocyanate blocks. The permeability for polar molecules, such as ammonia or hydrogen sulfide, significantly exceeds the permeability values obtained for non-polar molecules He, N2 and CH4. A relatively high permeability is also observed for carbon dioxide. At the same time, the content of POE blocks has a small effect on the permeability for all studied gases. The diffusion coefficient increases with an increase in the POE block content in PPEG for all studied gases
    corecore