12 research outputs found
Asr1 mediates glucose-hormone crosstalk by affecting sugar trafficking in tobacco plants
Asr (for ABA, stress, ripening) genes are exclusively found in the genomes of higher plants and the encoded proteins have been found localized both to the nucleus and cytoplasm. However, before the mechanisms underlying the activity of ASR proteins can be determined, the role of these proteins in planta should be deciphered. Results from the present study suggest that ASR is positioned within the signaling cascade of interactions among glucose, abscisic acid and gibberellins. Nicotiana tabacum transgenic lines with reduced levels of ASR protein showed impaired glucose metabolism and altered abscisic acid and gibberellin levels. These changes were associated with dwarfism, reduced CO2 assimilation and accelerated leaf senescence as a consequence of a fine regulation exerted by ASR to the glucose metabolism. This regulation resulted in an impact on glucose signaling mediated by hexokinase1 and SnRk1 (for Snf1-related kinase) which would subsequently have been responsible for photosynthesis, leaf senescence and hormone level alterations. It thus can be postulated that ASR is not only involved in the control of hexose uptake in heterotrophic organs, as we have previously reported, but also in the control of carbon fixation by the leaves mediated by a similar mechanism.Fil: Dominguez, Pia Guadalupe. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Frankel, Nicolás. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución; ArgentinaFil: Mazuch, Jeannine. Max Planck Institute for Molecular Plant Physiology; AlemaniaFil: Balbo, Ilse. Max Planck Institute for Molecular Plant Physiology; AlemaniaFil: Iusem, Norberto Daniel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Fisiología, Biología Molecular y Celular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Fernie, Alisdair R.. Max Planck Institute for Molecular Plant Physiology; AlemaniaFil: Carrari, Fernando Oscar. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin
Mode of Inheritance of Primary Metabolic Traits in Tomato[W][OA]
To evaluate components of fruit metabolic composition, we have previously metabolically phenotyped tomato (Solanum lycopersicum) introgression lines containing segmental substitutions of wild species chromosome in the genetic background of a cultivated variety. Here, we studied the hereditability of the fruit metabolome by analyzing an additional year's harvest and evaluating the metabolite profiles of lines heterozygous for the introgression (ILHs), allowing the evaluation of putative quantitative trait locus (QTL) mode of inheritance. These studies revealed that most of the metabolic QTL (174 of 332) were dominantly inherited, with relatively high proportions of additively (61 of 332) or recessively (80 of 332) inherited QTL and a negligible number displaying the characteristics of overdominant inheritance. Comparison of the mode of inheritance of QTL revealed that several metabolite pairs displayed a similar mode of inheritance of QTL at the same chromosomal loci. Evaluation of the association between morphological and metabolic traits in the ILHs revealed that this correlation was far less prominent, due to a reduced variance in the harvest index within this population. These data are discussed in the context of genomics-assisted breeding for crop improvement, with particular focus on the exploitation of wide biodiversity
Deficiency of a Plastidial Adenylate Kinase in Arabidopsis Results in Elevated Photosynthetic Amino Acid Biosynthesis and Enhanced Growth
An Arabidopsis (Arabidopsis thaliana) L. Heynh mutant deficient in an isoform of adenylate kinase (ADK; At2g37250) was isolated by reverse genetics. It contains a T-DNA insertion 377 bp downstream of the start point of transcription. The mutant lacks At2g37250 transcripts and has a mild reduction in total cellular ADK activity. Green fluorescent protein-fusion based cellular localization experiments, carried out with the full-length At2g37250, suggested a plastidial localization for this isoform. In keeping with this observation, organelle isolation experiments revealed that the loss in ADK activity was confined to the inner plastid. This plastid stroma ADK gene was found to be expressed tissue constitutively but at much higher levels in illuminated leaves. Phenotypic and biochemical analyses of the mutant revealed that it exhibited higher amino acid biosynthetic activity in the light and was characterized by an enhanced root growth. When the mutant was subjected to either continuous light or continuous dark, growth phenotypes were also observed in the shoots. While the levels of adenylates were not much altered in the leaves, the pattern of change observed in the roots was consistent with the inhibition of an ATP-consuming reaction. Taken together, these data suggest a role for the plastid stromal ADK in the coordination of metabolism and growth, but imply that the exact importance of this isoform is tissue dependent
Antisense Inhibition of the 2-Oxoglutarate Dehydrogenase Complex in Tomato Demonstrates Its Importance for Plant Respiration and during Leaf Senescence and Fruit Maturation
Transgenic tomato (Solanum lycopersicum) plants expressing a fragment of the gene encoding the E1 subunit of the 2-oxoglutarate dehydrogenase complex in the antisense orientation and exhibiting substantial reductions in the activity of this enzyme exhibit a considerably reduced rate of respiration. They were, however, characterized by largely unaltered photosynthetic rates and fruit yields but restricted leaf, stem, and root growth. These lines displayed markedly altered metabolic profiles, including changes in tricarboxylic acid cycle intermediates and in the majority of the amino acids but unaltered pyridine nucleotide content both in leaves and during the progression of fruit ripening. Moreover, they displayed a generally accelerated development exhibiting early flowering, accelerated fruit ripening, and a markedly earlier onset of leaf senescence. In addition, transcript and selective hormone profiling of gibberellins and abscisic acid revealed changes only in the former coupled to changes in transcripts encoding enzymes of gibberellin biosynthesis. The data obtained are discussed in the context of the importance of this enzyme in both photosynthetic and respiratory metabolism as well as in programs of plant development connected to carbon-nitrogen interactions
Analysis of a Range of Catabolic Mutants Provides Evidence That Phytanoyl-Coenzyme A Does Not Act as a Substrate of the Electron-Transfer Flavoprotein/Electron-Transfer Flavoprotein:Ubiquinone Oxidoreductase Complex in Arabidopsis during Dark-Induced Senescence1[W][OA]
The process of dark-induced senescence in plants is not fully understood, however, the functional involvement of an electron-transfer flavoprotein/electron-transfer flavoprotein:ubiquinone oxidoreductase (ETF/ETFQO), has been demonstrated. Recent studies have revealed that the enzymes isovaleryl-coenzyme A (CoA) dehydrogenase and 2-hydroxyglutarate dehydrogenase act as important electron donors to this complex. In addition both enzymes play a role in the breakdown of cellular carbon storage reserves with isovaleryl-CoA dehydrogenase being involved in degradation of the branched-chain amino acids, phytol, and lysine while 2-hydroxyglutarate dehydrogenase is exclusively involved in lysine degradation. Given that the chlorophyll breakdown intermediate phytanoyl-CoA accumulates dramatically both in knockout mutants of the ETF/ETFQO complex and of isovaleryl-CoA dehydrogenase following growth in extended dark periods we have investigated the direct importance of chlorophyll breakdown for the supply of carbon and electrons during this process. For this purpose we isolated three independent Arabidopsis (Arabidopsis thaliana) knockout mutants of phytanoyl-CoA 2-hydroxylase and grew them under the same extended darkness regime as previously used. Despite the fact that these mutants accumulated phytanoyl-CoA and also 2-hydroxyglutarate they exhibited no morphological changes in comparison to the other mutants previously characterized. These results are consistent with a single entry point of phytol breakdown into the ETF/ETFQO system and furthermore suggest that phytol is not primarily metabolized by this pathway. Furthermore analysis of isovaleryl-CoA dehydrogenase/2-hydroxyglutarate dehydrogenase double mutants generated here suggest that these two enzymes essentially account for the entire electron input via the ETF complex
Exploiting Natural Variation in Tomato to Define Pathway Structure and Metabolic Regulation of Fruit Polyphenolics in the Lycopersicum Complex
While the structures of plant primary metabolic pathways are generally well defined and highly conserved across species, those defining specialized metabolism are less well characterized and more highly variable across species. In this study, we investigated polyphenolic metabolism in the lycopersicum complex by characterizing the underlying biosynthetic and decorative reactions that constitute the metabolic network of polyphenols across eight different species of tomato. For this purpose, GC–MS- and LC–MS-based metabolomics of different tissues of Solanum lycopersicum and wild tomato species were carried out, in concert with the evaluation of cross-hybridized microarray data for MapMan-based transcriptomic analysis, and publicly available RNA-sequencing data for annotation of biosynthetic genes. The combined data were used to compile species-specific metabolic networks of polyphenolic metabolism, allowing the establishment of an entire pan-species biosynthetic framework as well as annotation of the functions of decoration enzymes involved in the formation of metabolic diversity of the flavonoid pathway. The combined results are discussed in the context of the current understanding of tomato flavonol biosynthesis as well as a global view of metabolic shifts during fruit ripening. Our results provide an example as to how large-scale biology approaches can be used for the definition and refinement of large specialized metabolism pathways