71 research outputs found

    Large X-ray Flares from LMC X-4: Discovery of Milli-hertz Quasi-periodic Oscillations and QPO-modulated Pulsations

    Get PDF
    We report the discovery of milli-hertz (mHz) quasi-periodic oscillations (QPOs) and QPO-modulated pulsations during large X-ray flares from the high-mass X-ray binary pulsar LMC X-4 using data from the Rossi X-Ray Timing Explorer (RXTE). The lightcurves of flares show that, in addition to ~74 mHz coherent pulsations, there exist two more time-varying temporal structures at frequencies of ~0.65-1.35 and ~2-20 mHz. These relatively long-term structures appear in the power density spectra as mHz QPOs and as well-developed sidebands around the coherent pulse frequency as well, indicating that the amplitudes of the coherent pulsation is modulated by those of the mHz QPOs. One interesting feature is that, while the first flare shows symmetric sidebands around the coherent pulse frequency, the second flare shows significant excess emission in the lower-frequency sidebands due to the ~2-20 mHz QPOs. We discuss the origin of the QPOs using a combination of the beat-frequency model and a modified version of the Keplerian-frequency model. According to our discussion, it seems to be possible to attribute the origin of the ~0.65-1.35 and ~2-20 mHz QPOs to the beating between the rotational frequency of the neutron star and the Keplerian frequency of large accreting clumps near the corotation radius and to the orbital motion of clumps at Keplerian radii of 2-10 times 10^9 cm, respectively.Comment: 12 pages, including 4 figures; accepted by ApJ Letter

    RX J1643.7+3402: a new bright cataclysmic variable

    Get PDF
    We report the discovery of a new bright (V\sim12.6) cataclysmic variable star identified with the ROSAT X-ray source RX J1643.7+3402. Spectroscopic and photometric observations show it to be a novalike variable sharing some of the characteristics of the SW Sex sub-class of novalike CVs. The spectroscopic period may be either 2\fh575 or 2\fh885, within the period "gap." A photometric modulation with a probable period of 2\fh595 and an amplitude of \sim 0.1 mag in V is present on most nights and could be either a "positive" or a "negative" superhump modulation (depending on the exact spectroscopic period), indicating the presence of a precessing accretion disk in this system. Rapid variations of 0.1 to 0.2 mag amplitude in V repeat with a time scale of \sim 15 min

    Evolution of Iron Kα_{\alpha} Line Emission in the Black Hole Candidate GX 339-4

    Full text link
    GX 339-4 was regularly monitored with RXTE during a period (in 1999) when its X-ray flux decreased significantly (from 4.2×1010\times 10^{-10} erg cm2s1^{-2} s^{-1} to 7.6×1012\times 10^{-12} erg cm2^{-2}s1^{-1} in the 3--20 keV band), as the source settled into the ``off state''. Our spectral analysis revealed the presence of a prominent iron Kα_{\alpha} line in the observed spectrum of the source for all observations. The line shows an interesting evolution: it is centered at \sim6.4 keV when the measured flux is above 5×1011\times 10^{-11} erg cm2s1^{-2} s^{-1}, but is shifted to \sim6.7 keV at lower fluxes. The equivalent width of the line appears to increase significantly toward lower fluxes, although it is likely to be sensitive to calibration uncertainties. While the fluorescent emission of neutral or mildly ionized iron atoms in the accretion disk can perhaps account for the 6.4 keV line, as is often invoked for black hole candidates, it seems difficult to understand the 6.7 keV line with this mechanism, because the disk should be less ionized at lower fluxes (unless its density changes drastically). On the other hand, the 6.7 keV line might be due to recombination cascade of hydrogen or helium like iron ions in an optically thin, highly ionized plasma. We discuss the results in the context of proposed accretion models.Comment: 18 pages, 2 figures, accepted for publication in the ApJ in v552n2p May 10, 2001 issu

    Timing and spectral studies of LMC X-4 in high and low states with Beppo-SAX: Detection of pulsations in the soft spectral component

    Full text link
    We report here detailed timing and spectral analysis of two Beppo-SAX observations of the binary X-ray pulsar LMC X-4 carried out during the low and high states of its 30.5 days long super-orbital period. Timing analysis clearly shows 13.5 s X-ray pulsations in the high state of the super-orbital period which allows us to measure the mid-eclipse time during this observation. Combining this with two other mid-eclipse times derived earlier with the ASCA, we derived a new estimate of the orbital period derivative. Pulse-phase averaged spectroscopy in the high and low states shows that the energy spectrum in the 0.1 - 10 keV band comprises of a hard power-law, a soft excess, and a strong iron emission line. The continuum flux is found to decrease by a factor of ~ 60 in the low state while the decrease in the iron line flux is only by a factor of ~ 12, suggesting a different site for the production of the line emission. In the low state, we have not found any significant increase in the absorption column density. The X-ray emission is found to come from a very large region, comparable to the size of the companion star. Pulse phase resolved spectroscopy in the high state shows a pulsating nature of the soft spectral component with some phase offset compared to the hard X-rays, as is known in some other binary X-ray pulsars.Comment: 13 pages, 10 figures, Accepted for publication in The Astrophysical Journa

    Multiwavelength Observations of GX 339-4 in 1996. I. Daily Light Curves and X-ray and Gamma-Ray Spectroscopy

    Get PDF
    As part of our multiwavelength campaign of GX 339-4 observations in 1996 we present our radio, X-ray, and gamma-ray observations made in July, when the source was in a hard state (= soft X-ray low state). The radio observations were made at the time when there was a possible radio jet. We show that the radio spectrum was flat and significantly variable, and that the radio spectral shape and amplitude at this time were not anomalous for this source. Daily light curves from our pointed observation July 9-23 using OSSE, from BATSE, and from the ASM on RXTE also show that there was no significant change in the X- and gamma-ray flux or hardness during the time the possible radio jet-like feature was seen. The higher energy portion of our pointed RXTE observation made July 26 can be equally well fit using simple power law times exponential (PLE) and Sunyaev-Titarchuk (ST) functions. An additional soft component is required, as well as a broad emission feature centered on 6.4 keV. This may be an iron line that is broadened by orbital Doppler motions and/or scattering off a hot medium. Its equivalent width is 600 eV. Our simplistic continuum fitting does not require an extra reflection component. Both a PLE and a ST model also fit our OSSE spectrum on its own. Although the observations are not quite simultaneous, combining the RXTE and CGRO spectra we find that the PLE model easily fits the joint spectrum. However, the ST model drops off too rapidly with increasing energies to give an acceptable joint fit.Comment: Submitted to Astrophysical Journal. 25 pages. 11 figure

    A Transition to the Soft State in GRS 1758-258

    Full text link
    Near the end of 2001 February, the black-hole candidate (BHC) GRS 1758-258 made an abrupt transition from a standard hard (low) state to a soft state. Unlike Cyg X-1 and other BHCs, whose luminosity increases during this transition, GRS 1758-258 was dimmer after the transition. We present observations with the Proportional Counter Array on the Rossi X-ray Timing Explorer and interpret the phenomenon in the context of a ``dynamical'' soft state model. Using this model we predicted that mass transfer from the companion had ceased, and that the luminosity should decay on a timescale of a few weeks. The most recent data support this prediction, being consistent with a decay time of 34 dy. The current state is consistent with the ``off'' state of GRS 1758-258 reported by GRANAT/Sigma in 1991-1992.Comment: 13 pages, 5 figures, accepted for publication in The Astrophysical Journal Letters Accepted version has only minor changes, plus extra data showing more of the deca

    The Evolution Of LMC X-4 Flares: Evidence For Super-Eddington Radiation Oozing Through Inhomogeneous Polar Cap Accretion Flows ?

    Get PDF
    We present the results of two extensive Rossi X-ray Timing Explorer observations of large X-ray flaring episodes from the high-mass X-ray binary pulsar LMC X-4. Light curves during the flaring episodes comprise bright peaks embedded in relatively fainter regions, with complex patterns of recurrence and clustering of flares. We identify precursors preceding the flaring activity. Pulse profiles during the flares appear to be simple sinusoids, and pulsed fractions are proportional to the flare intensities. We fit Gaussian functions to flare peaks to estimate the mean full-width-half-maximum to be \sim68 s. Significant rapid aperiodic variability exists up to a few hertz during the flares, which is related to the appearance of narrow, spiky peaks in the light curves. While spectral fits and softness ratios show overall spectral softening as the flare intensity increases, the narrow, spiky peaks do not follow this trend. The mean fluence of the flare peaks is (3.1 ±\pm 2.9) ×\times 1040^{40} ergs in the 2.5--25 keV energy range, with its maximum at \sim1.9 ×\times 1041^{41} ergs. The flare peak luminosity reaches up to (2.1 ±\pm 0.2) ×\times 1039^{39} ergs s1^{-1}, far above the Eddington luminosity of a neutron star. We discuss possible origins of the flares, and we also propose that inhomogeneous accretion columns onto the neutron star polar caps are responsible for the observed properties.Comment: 39 pages (including figures and tables), accepted for publication in Ap

    Discovery of optical pulsations in V2116 Ophiuchi/GX 1+4

    Get PDF
    We report the detection of pulsations with 124\sim 124 s period in V2116 Oph, the optical counterpart of the low-mass X-ray binary GX 1+4. The pulsations are sinusoidal with modulation amplitude of up to 4% in blue light and were observed in ten different observing sessions during 1996 April-August using a CCD photometer at the 1.6-m and 0.6-m telescopes of Laborat\'orio Nacional de Astrof\'{\i}sica, in Brazil. The pulsations were also observed with the UBVRIUBVRI fast photometer. With only one exception the observed optical periods are consistent with those observed by the BATSE instrument on board the Compton Gamma Ray Observatory at the same epoch. There is a definite correlation between the observability of pulsations and the optical brightness of the system: V2116~Oph had RR magnitude in the range 15.315.515.3-15.5 when the pulsed signal was detected, and R=16.017.7R = 16.0-17.7 when no pulsations were present. The discovery makes GX 1+4 only the third of 35\sim 35 accretion-powered X-ray pulsars to be firmly detected as a pulsating source in the optical. The presence of flickering and pulsations in V2116 Oph adds strong evidence for an accretion disk scenario in this system. The absolute magnitude of the pulsed component on 1996 May 27 is estimated to be MV1.5M_V \sim -1.5. The implied dimensions for the emitting region are 1.1 R_{\sun}, 3.2 R_{\sun}, and 7.0 R_{\sun}, for black-body spectral distributions with T=105T = 10^5 K, 2×1042 \times 10^4 K, and 1×1041 \times 10^4 K, respectively.Comment: 9 pages, 3 figures in PostScript, latex, accepted for publication on the Astrophysical Journal Letter
    corecore