68 research outputs found

    Quantitative analysis of DNA levels in maternal plasma in normal and Down syndrome pregnancies

    Get PDF
    BACKGROUND: We investigated fetal and total DNA levels in maternal plasma in patients bearing fetuses affected with Down syndrome in comparison to controls carrying fetuses with normal karyotype. METHODS: DNA levels in maternal plasma were measured using real-time quantitative PCR using SRY and β-globin genes as markers. Twenty-one pregnant women with a singleton fetus at a gestational age ranging from 15 to 19 weeks recruited before amniocentesis (carried out for reasons including material serum screening and advanced material age), and 16 pregnant women bearing fetuses affected with Down syndrome between 17 to 22 weeks of gestation were involved in the study. RESULTS: The specificity of the system reaches 100% (no Y signal was detected in 14 women pregnant with female fetuses) and the sensitivity 91.7% (SRY amplification in 22 of 24 examined samples). The median fetal DNA levels in women carrying Down syndrome (n=11) and the controls (n=13) were 23.3 (range 0–58.5) genome-equivalents/ml and 24.5 (range 0–47.5) genome-equivalents/ml of maternal plasma, respectively (P = 0.62). The total median DNA levels in pregnancies with Down syndrome and the controls were 10165 (range 615–65000) genome-equivalents/ml and 7330 (range 1300–36750) genome-equivalents/ml, respectively (P = 0.32). The fetal DNA proportion in maternal plasma was 0%-6 % (mean 0.8%) in women carrying Down syndrome and 0%-2.6 % (mean 0.7 %) in the controls, respectively (P=0.86). CONCLUSIONS: Our study revealed no difference in fetal DNA levels and fetal DNA: maternal DNA ratio between the patients carrying Down syndrome fetuses and the controls

    Pathogenesis of Pregnancy-Related Complications 1.0 and 2.0

    No full text
    These Special Issue IJMS were dedicated to the major complications responsible for maternal and perinatal morbidity and mortality, such as gestational hypertension (GH), preeclampsia (PE), fetal growth restriction (FGR), gestational diabetes mellitus (GDM), preterm birth, and chronic venous disease [...

    Association Analysis in Young and Middle-Aged Mothers—Relation between Expression of Cardiovascular Disease Associated MicroRNAs and Abnormal Clinical Findings

    No full text
    The principal goal of the study was to map common postpartal alterations in gene expression of microRNAs associated with diabetes/cardiovascular/cerebrovascular diseases induced by most frequently occurring pregnancy-related complications (gestational hypertension, preeclampsia, fetal growth restriction, gestational diabetes mellitus, preterm prelabor rupture of membranes, or spontaneous preterm birth). In addition, the association analyses between individual abnormal clinical findings (overweight/obesity, central obesity, hypertension, on blood pressure treatment, history of infertility treatment, actual hormonal contraceptive use, the presence of trombophilic gene mutations, actual smoking status, increased serum levels of total cholesterol, HDL (high density lipoprotein) cholesterol, LDL (low density lipoprotein) cholesterol, triglycerides, lipoprotein A, CRP (C-reactive protein), and uric acid, and increased plasma levels of homocysteine) and microRNA expression levels were performed in mothers with respect/regardless to previous course of gestation. The prior exposure to gestational hypertension, preeclampsia, fetal growth restriction, gestational diabetes mellitus, preterm prelabor rupture of membranes, or spontaneous preterm birth caused that a significant proportion of mothers (52.42% at 90.0% specificity) had substantially altered microRNA expression profile, which might originate lifelong cardiovascular risk. 26 out of 29 tested microRNAs were up-regulated in mothers with a history of such complicated pregnancies. MicroRNA expression profiles were also able to differentiate between mothers with normal and abnormal clinical findings (BMI (body mass index), waist circumference, systolic blood pressure, on blood pressure treatment, history of infertility treatment, and the presence of trombophilic gene mutations) irrespective of previous course of gestation. The treatment of hypertension even intensified upregulation of some microRNAs (miR-24-3p, and miR-342-3p) already present in women after complicated pregnancies. Newly, the presence of overweight/obesity (miR-155-5p), systolic hypertension (miR-92a-3p, and miR-210-3p), treatment for infertility (miR-155-5p), and treatment for hypertension (miR-210-3p) induced upregulation of several microRNAs. In general, mothers after complicated pregnancies are at increased risk of development of cardiovascular complications. Especially those mothers indicated to have postpartally altered microRNA expression profiles might be considered as a highly risky group that would benefit from dispensarization and implementation of primary prevention strategies

    First-Trimester Screening for Miscarriage or Stillbirth—Prediction Model Based on MicroRNA Biomarkers

    No full text
    We evaluated the potential of cardiovascular-disease-associated microRNAs to predict in the early stages of gestation (from 10 to 13 gestational weeks) the occurrence of a miscarriage or stillbirth. The gene expressions of 29 microRNAs were studied retrospectively in peripheral venous blood samples derived from singleton Caucasian pregnancies diagnosed with miscarriage (n = 77 cases; early onset, n = 43 cases; late onset, n = 34 cases) or stillbirth (n = 24 cases; early onset, n = 13 cases; late onset, n = 8 cases; term onset, n = 3 cases) and 80 selected gestational-age-matched controls (normal term pregnancies) using real-time RT-PCR. Altered expressions of nine microRNAs (upregulation of miR-1-3p, miR-16-5p, miR-17-5p, miR-26a-5p, miR-146a-5p, and miR-181a-5p and downregulation of miR-130b-3p, miR-342-3p, and miR-574-3p) were observed in pregnancies with the occurrence of a miscarriage or stillbirth. The screening based on the combination of these nine microRNA biomarkers revealed 99.01% cases at a 10.0% false positive rate (FPR). The predictive model for miscarriage only was based on the altered gene expressions of eight microRNA biomarkers (upregulation of miR-1-3p, miR-16-5p, miR-17-5p, miR-26a-5p, miR-146a-5p, and miR-181a-5p and downregulation of miR-130b-3p and miR-195-5p). It was able to identify 80.52% cases at a 10.0% FPR. Highly efficient early identification of later occurrences of stillbirth was achieved via the combination of eleven microRNA biomarkers (upregulation of miR-1-3p, miR-16-5p, miR-17-5p, miR-20a-5p, miR-146a-5p, and miR-181a-5p and downregulation of miR-130b-3p, miR-145-5p, miR-210-3p, miR-342-3p, and miR-574-3p) or, alternatively, by the combination of just two upregulated microRNA biomarkers (miR-1-3p and miR-181a-5p). The predictive power achieved 95.83% cases at a 10.0% FPR and, alternatively, 91.67% cases at a 10.0% FPR. The models based on the combination of selected cardiovascular-disease-associated microRNAs had very high predictive potential for miscarriages or stillbirths and may be implemented in routine first-trimester screening programs

    Cardiovascular Disease-Associated MicroRNAs as Novel Biomarkers of First-Trimester Screening for Gestational Diabetes Mellitus in the Absence of Other Pregnancy-Related Complications

    No full text
    We assessed the diagnostic potential of cardiovascular disease-associated microRNAs for the early prediction of gestational diabetes mellitus (GDM) in singleton pregnancies of Caucasian descent in the absence of other pregnancy-related complications. Whole peripheral venous blood samples were collected within 10 to 13 weeks of gestation. This retrospective study involved all pregnancies diagnosed with only GDM (n = 121) and 80 normal term pregnancies selected with regard to equality of sample storage time. Gene expression of 29 microRNAs was assessed using real-time RT-PCR. Upregulation of 11 microRNAs (miR-1-3p, miR-20a-5p, miR-20b-5p, miR-23a-3p, miR-100-5p, miR-125b-5p, miR-126-3p, miR-181a-5p, miR-195-5p, miR-499a-5p, and miR-574-3p) was observed in pregnancies destinated to develop GDM. Combined screening of all 11 dysregulated microRNAs showed the highest accuracy for the early identification of pregnancies destinated to develop GDM. This screening identified 47.93% of GDM pregnancies at a 10.0% false positive rate (FPR). The predictive model for GDM based on aberrant microRNA expression profile was further improved via the implementation of clinical characteristics (maternal age and BMI at early stages of gestation and an infertility treatment by assisted reproductive technology). Following this, 69.17% of GDM pregnancies were identified at a 10.0% FPR. The effective prediction model specifically for severe GDM requiring administration of therapy involved using a combination of these three clinical characteristics and three microRNA biomarkers (miR-20a-5p, miR-20b-5p, and miR-195-5p). This model identified 78.95% of cases at a 10.0% FPR. The effective prediction model for GDM managed by diet only required the involvement of these three clinical characteristics and eight microRNA biomarkers (miR-1-3p, miR-20a-5p, miR-20b-5p, miR-100-5p, miR-125b-5p, miR-195-5p, miR-499a-5p, and miR-574-3p). With this, the model identified 50.50% of GDM pregnancies managed by diet only at a 10.0% FPR. When other clinical variables such as history of miscarriage, the presence of trombophilic gene mutations, positive first-trimester screening for preeclampsia and/or fetal growth restriction by the Fetal Medicine Foundation algorithm, and family history of diabetes mellitus in first-degree relatives were included in the GDM prediction model, the predictive power was further increased at a 10.0% FPR (72.50% GDM in total, 89.47% GDM requiring therapy, and 56.44% GDM managed by diet only). Cardiovascular disease-associated microRNAs represent promising early biomarkers to be implemented into routine first-trimester screening programs with a very good predictive potential for GDM

    Influence of In Vitro IL-2 or IL-15 Alone or in Combination with Hsp-70-Derived 14-mer Peptide (TKD) on the Expression of NK Cell Activatory and Inhibitory Receptors

    Get PDF
    NK cells represent a potential tool for adoptive immunotherapy against tumors. Membrane-bound Hsp70 acts as a tumor-specific marker enhancing NK cell activity. Using flow cytometry the effect of in vitro stimulation with IL-2 or IL-15 alone or in combination with Hsp70-derived 14-mer peptide (TKD) on cell surface expression of NK activatory receptors (CD16, NKG2D, NKG2C, NKp46, NKp44, NKp30, KIR2DL4, DNAM-1, and LAMP1) and NK inhibitory receptors (NKG2A, KIR2DL2/L3, LIR1/ILT-2, and NKR-P1A) in healthy individuals was studied. Results were expressed as the percentage of receptor expressing cells and the amount of receptor expressed by CD3−CD56+ cellular population. CD94, NKG2D, NKp44, NKp30, KIR2DL4, DNAM-1, LAMP1, NKG2A, and NKR-P1A were upregulated after the stimulation with IL-2 or IL-15 alone or in combination with TKD. KIR2DL2/L3 was upregulated only by IL-15 and IL-15/TKD. Concurrently, an increase in a number of NK cells positive for CD94, NKp44, NKp30, KIR2DL4, and LAMP1 was observed. IL-15 and IL-15/TKD caused also cell number rise positive for KIR2DL2/L3 and NKR-P1A. Cell number positive for NKG2C and NKG2A was increased only by IL-2 and IL-2/TKD. The diverse effect of IL-2 or IL-15 w or w/o TKD on cell surface expression was observed in CD16, NKp46, and LIR1/ILT-2

    First Trimester Prediction of Preterm Delivery in the Absence of Other Pregnancy-Related Complications Using Cardiovascular-Disease Associated MicroRNA Biomarkers

    No full text
    The aim of the study was to determine if aberrant expression profile of cardiovascular disease associated microRNAs would be able to predict within 10 to 13 weeks of gestation preterm delivery such as spontaneous preterm birth (PTB) or preterm prelabor rupture of membranes (PPROM) in the absence of other pregnancy-related complications (gestational hypertension, preeclampsia, fetal growth restriction, or small for gestational age). In addition, we assessed if aberrant expression profile of cardiovascular disease associated microRNAs would be able to predict preterm delivery before and after 34 weeks of gestation. The retrospective study was performed within the period November 2012 to March 2020. Whole peripheral blood samples were collected from 6440 Caucasian individuals involving 41 PTB and 65 PPROM singleton pregnancies. A control group, 80 singleton term pregnancies, was selected on the base of equal sample storage time. Gene expression of 29 selected cardiovascular disease associated microRNAs was studied using real-time RT-PCR. Downregulation of miR-16-5p, miR-20b-5p, miR-21-5p, miR-24-3p, miR-26a-5p, miR-92a-3p, miR-126-3p, miR-133a-3p, miR-145-5p, miR-146a-5p, miR-155-5p, miR-210-3p, miR-221-3p and miR-342-3p was observed in pregnancies with preterm delivery before 37 (≤36 + 6/7) weeks of gestation. Majority of downregulated microRNAs (miR-16-5p, miR-24-3p, miR-26a-5p, miR-92a-3p, miR-133a-3p, miR-145-5p, miR-146a-5p, miR-155-5p, miR-210-3p, and miR-342-3p) was associated with preterm delivery occurring before 37 (≤36 + 6/7) weeks of gestation. The only miR-210-3p was downregulated in pregnancies with preterm delivery before 34 (≤33 + 6/7) weeks of gestation. The type of preterm delivery also had impact on microRNA gene expression profile. Downregulation of miR-24-3p, miR-92a-3p, miR-155-5p, and miR-210-3p was a common feature of PTB and PPROM pregnancies. Downregulation of miR-16-5p, miR-20b-5p, miR-26a-5p, miR-126-3p, miR-133a-3p, miR-146a-5p, miR-221-3p, and miR-342-3p appeared just in PTB pregnancies. No microRNA was uniquely dysregulated in PPROM pregnancies. The combination of 12 microRNAs (miR-16-5p, miR-20b-5p, miR-21-5p, miR-24-3p, miR-26a-5p, miR-92a-3p, miR-133a-3p, miR-145-5p, miR-146a-5p, miR-155-5p, miR-210-3p, and miR-342-3p, AUC 0.818, p 0.634) equally as the combination of 6 microRNAs (miR-16-5p, miR-21-5p, miR-24-3p, miR-133a-3p, miR-155-5p, and miR-210-3p, AUC 0.812, p 0.652) can predict preterm delivery before 37 weeks of gestation in early stages of gestation in 52.83% pregnancies at 10.0% FPR. Cardiovascular disease associated microRNAs represent promising biomarkers with very good diagnostical potential to be implemented into the current routine first trimester screening programme to predict preterm delivery

    Novel First-Trimester Prediction Model for Any Type of Preterm Birth Occurring before 37 Gestational Weeks in the Absence of Other Pregnancy-Related Complications Based on Cardiovascular Disease-Associated MicroRNAs and Basic Maternal Clinical Characteristics

    No full text
    The goal of the study was to establish an efficient first-trimester predictive model for any type of preterm birth before 37 gestational weeks (spontaneous preterm birth (PTB) or preterm prelabor rupture of membranes (PPROM)) in the absence of other pregnancy-related complications, such as gestational hypertension, preeclampsia, fetal growth restriction, or small for gestational age. The retrospective study was performed in the period from 11/2012 to 3/2020. Peripheral blood samples were collected from 6440 Caucasian individuals involving 41 PTB and 65 PPROM singleton pregnancies. A control group with 80 singleton term pregnancies was selected on the basis of equal sample-storage time. A combination of only six microRNAs (miR-16-5p, miR-21-5p, miR-24-3p, miR-133a-3p, miR-155-5p, and miR-210-3p; AUC 0.812, p < 0.001, 70.75% sensitivity, 78.75% specificity, cut-off > 0.652) could predict preterm delivery before 37 gestational weeks in early stages of gestation in 52.83% of pregnancies with a 10.0% FPR. This predictive model for preterm birth based on aberrant microRNA expression profile was further improved via implementation of maternal clinical characteristics (maternal age and BMI at early stages of gestation, infertility treatment with assisted reproductive technology, occurrence of preterm delivery before 37 gestational weeks in previous pregnancy(ies), and presence of any kind of autoimmune disease (rheumatoid arthritis, systemic lupus erythematosus, antiphospholipid syndrome, type 1 diabetes mellitus, or other autoimmune disease)). With this model, 69.81% of pregnancies destined to deliver before 37 gestational weeks were identified with a 10.0% FPR at early stages of gestation. When other clinical variables as well as those mentioned above—such as positive first-trimester screening for early preeclampsia with onset before 34 gestational weeks and/or fetal growth restriction with onset before 37 gestational weeks using the Fetal Medicine Foundation algorithm, as well as positive first-trimester screening for spontaneous preterm birth with onset before 34 gestational weeks using the Fetal Medicine Foundation algorithm—were added to the predictive model for preterm birth, the predictive power was even slightly increased to 71.70% with a 10.0% FPR. Nevertheless, we prefer to keep the first-trimester screening for any type of preterm birth occurring before 37 gestational weeks in the absence of other pregnancy-related complications as simple as possible
    • …
    corecore