27 research outputs found

    Prepuberal stimulation of 5-HT7-R by LP-211 in a rat model of hyper-activity and attention-deficit: permanent effects on attention, brain amino acids and synaptic markers in the fronto-striatal interface

    Get PDF
    The cross-talk at the prefronto-striatal interface involves excitatory amino acids, different receptors, transducers and modulators. We investigated long-term effects of a prepuberal, subchronic 5-HT7-R agonist (LP-211) on adult behaviour, amino acids and synaptic markers in a model for Attention-Deficit/Hyperactivity Disorder (ADHD). Naples High Excitability rats (NHE) and their Random Bred controls (NRB) were daily treated with LP-211 in the 5th and 6th postnatal week. One month after treatment, these rats were tested for indices of activity, non selective (NSA), selective spatial attention (SSA) and emotionality. The quantity of L-Glutamate (L-Glu), L-Aspartate (L-Asp) and L-Leucine (L-Leu), dopamine transporter (DAT), NMDAR1 subunit and CAMKIIα, were assessed in prefrontal cortex (PFC), dorsal (DS) and ventral striatum (VS), for their role in synaptic transmission, neural plasticity and information processing. Prepuberal LP-211 (at lower dose) reduced horizontal activity and (at higher dose) increased SSA, only for NHE but not in NRB rats. Prepuberal LP-211 increased, in NHE rats, L-Glu in the PFC and L-Asp in the VS (at 0.250 mg/kg dose), whereas (at 0.125 mg/kg dose) it decreased L-Glu and L-Asp in the DS. The L-Glu was decreased, at 0.125 mg/kg, only in the VS of NRB rats. The DAT levels were decreased with the 0.125 mg/kg dose (in the PFC), and increased with the 0.250 mg/kg dose (in the VS), significantly for NHE rats. The basal NMDAR1 level was higher in the PFC of NHE than NRB rats; LP-211 treatment (at 0.125 mg/kg dose) decreased NMDAR1 in the VS of NRB rats. This study represents a starting point about the impact of developmental 5-HT7-R activation on neuro-physiology of attentive processes, executive functions and their neural substrates

    Rats Lacking Dopamine Transporter Display Increased Vulnerability and Aberrant Autonomic Response to Acute Stress

    No full text
    The activity of the hypothalamus–pituitary–adrenal (HPA) axis is pivotal in homeostasis and presides the adaptative response to stress. Dopamine Transporter (DAT) plays a key role in the regulation of the HPA axis. We used young adult female DAT Knockout (KO) rats to assess the effects of DAT ablation (partial, heterozygous DAT+/-, or total, homozygous DAT-/-) on vulnerability to stress. DAT-/- rats show profound dysregulation of pituitary homeostasis, in the presence of elevated peripheral corticosterone, before and after acute restraint stress. During stress, DAT-/- rats show abnormal autonomic response at either respiratory and cardiovascular level, and delayed body temperature increase. DAT+/- rats display minor changes of hypophyseal homeostatic mechanisms. These rats display a similar pituitary activation to that of the control animals, albeit in the presence of higher release of peripheral corticosterone than DAT-/- after stress, and reduced temperature during stress. Our data indicate that DAT regulates the HPA axis at both the central and peripheral level, including autonomic function during stress. In particular, the partial deletion of DAT results in increased vulnerability to stress in female rats, which display central and peripheral alterations that are reminiscent of PTSD, and they might provide new insights in the pathophysiology of this disorder

    Early Adolescence Prefrontal Cortex Alterations in Female Rats Lacking Dopamine Transporter

    No full text
    Monoamine dysfunctions in the prefrontal cortex (PFC) can contribute to diverse neuropsychiatric disorders, including ADHD, bipolar disorder, PTSD and depression. Disrupted dopamine (DA) homeostasis, and more specifically dopamine transporter (DAT) alterations, have been reported in a variety of psychiatric and neurodegenerative disorders. Recent studies using female adult rats heterozygous (DAT+/−) and homozygous (DAT−/−) for DAT gene, showed the utility of those rats in the study of PTSD and ADHD. Currently, a gap in the knowledge of these disorders affecting adolescent females still represents a major limit for the development of appropriate treatments. The present work focuses on the characterization of the PFC function under conditions of heterozygous and homozygous ablation of DAT during early adolescence based on the known implication of DAT and PFC DA in psychopathology during adolescence. We report herein that genetic ablation of DAT in the early adolescent PFC of female rats leads to changes in neuronal and glial cell homeostasis. In brief, we observed a concurrent hyperactive phenotype, accompanied by PFC alterations in glutamatergic neurotransmission, signs of neurodegeneration and glial activation in DAT-ablated rats. The present study provides further understanding of underlying neuroinflammatory pathological processes that occur in DAT-ablated female rats, what can provide novel investigational approaches in human diseases

    Feed forward incision control for laser microsurgery of soft tissue

    No full text
    In this paper we present a feed forward controller to regulate the depth of laser incisions in soft tissue. Such a controller is compatible with the requirements of laser microsurgery, where space constraints limit the use of sensing devices. The controller is based on an inverse model that maps the desired incision depth to the required laser exposure time. This model is extracted from experimental data through the use of statistical learning methods. To prove the concept, the controller is implemented in a robot-assisted laser microsurgery system that enables precision control of exposure time and laser motion. The validity and the accuracy of the controller is verified experimentally on ex-vivo muscle tissue (chicken breast), revealing an RMSE of 0.12 mm for incisions ranging up to 1 mm. In addition, we demonstrate how the model can be used to implement the automatic ablation of entire volumes of tissue, through the superposition of controlled laser incisions

    Online estimation of laser incision depth for transoral microsurgery: approach and preliminary evaluation

    No full text
    The use of lasers in transoral surgery enables precise tissue incision with minimal adverse effects on surrounding structures. Nonetheless, the lack of haptic feedback during laser cutting impairs the surgeon's perception of the incision depth, potentially leading to undesired tissue damage. This paper presents a novel approach, based on statistical regression analysis, to estimate the laser incision depth in soft tissue. User trials were conducted in a laser surgery set-up, to verify the effectiveness of online estimation of incision depth in supporting precise tissue cutting. The estimation accuracy was verified on ex vivo muscle tissue, revealing a root mean squared error (RMSE) of 0.1 mm for depths ranging up to 1.4 mm. Online estimation of depth has the potential to significantly improve the incision control of users. The proposed approach was successful in producing estimations of laser cutting depth in ex vivo muscle tissue. Further investigation is required to validate this approach on other types of tissue. Providing depth estimation during laser cutting allows users to perform more precise incisions

    The Electroretinogram as a Biomarker of Central Dopamine and Serotonin: Potential Relevance to Psychiatric Disorders

    No full text
    Dysfunctions in brain dopamine and serotonin neurotransmission are believed to be involved in the etiology of psychiatric disorders, and electroretinogram (ERG) anomalies have been reported in psychiatric patients. The goal of this study was to evaluate whether ERG anomalies could result from central dopamine or serotonin dysfunctions or from changes in the retinal bioavailability of these neurotransmitters. Photopic and scotopic ERGs were recorded in R439H tryptophan hydroxylase 2 knockin (Tph2-KI) mice that have an approximately 80% decrease in brain serotonin and dopamine transporter knockout (DAT-KO) mice showing a fivefold increase in brain extracellular dopamine. Dopamine and serotonin retinal and striatal tissue content were also measured. The role of dopamine D1 receptors (D1R) and D2 receptors (D2R) in the ERG responses was evaluated in D1R-KO and D2R-KO mice. An increase in photopic b-wave implicit time was observed in Tph2-KI mice (wildtype = 24.25 msec, KI = 25.22 msec; p = .011). The DAT-KO mice showed a decrease in rod sensitivity (wildtype =−1.97 log units, KO =−1.81 log units; p = .014). In contrast to remarkable alterations in brain levels, no changes in dopamine and serotonin retinal content were found in DAT-KO and Tph2-KI mice, respectively. The D1R-KO mice showed anomalies in photopic and scotopic maximal amplitude, whereas D2R-KO mice showed higher oscillatory potentials relative contribution to the b-wave amplitude. Alterations in central dopamine and serotonin neurotransmission can affect the ERG responses. The ERG anomalies reported in psychiatric disorders might serve as biomarkers of central monoaminergic dysfunction, thus promoting ERG measurements as a useful tool in psychiatric research
    corecore