28 research outputs found
The systematic review of artificial intelligence applications in breast cancer diagnosis
This article belongs to the Special Issue Artificial Intelligence Technology in Clinical Classification and Prediction.Several studies have demonstrated the value of artificial intelligence (AI) applications in breast cancer diagnosis. The systematic review of AI applications in breast cancer diagnosis includes several studies that compare breast cancer diagnosis and AI. However, they lack systematization, and each study appears to be conducted uniquely. The purpose and contributions of this study are to offer elaborative knowledge on the applications of AI in the diagnosis of breast cancer through citation analysis in order to categorize the main area of specialization that attracts the attention of the academic community, as well as thematic issue analysis to identify the species being researched in each category. In this study, a total number of 17,900 studies addressing breast cancer and AI published between 2012 and 2022 were obtained from these databases: IEEE, Embase: Excerpta Medica Database Guide-Ovid, PubMed, Springer, Web of Science, and Google Scholar. We applied inclusion and exclusion criteria to the search; 36 studies were identified. The vast majority of AI applications used classification models for the prediction of breast cancer. Howbeit, accuracy (99%) has the highest number of performance metrics, followed by specificity (98%) and area under the curve (0.95). Additionally, the Convolutional Neural Network (CNN) was the best model of choice in several studies. This study shows that the quantity and caliber of studies that use AI applications in breast cancer diagnosis will continue to rise annually. As a result, AI-based applications are viewed as a supplement to doctors' clinical reasoning, with the ultimate goal of providing quality healthcare that is both affordable and accessible to everyone worldwide
The clinical utilities of multi-pinhole single photon emission computed tomography
Single photon emission computed tomography (SPECT) is an important imaging modality for various applications in nuclear medicine. The use of multi-pinhole (MPH) collimators can provide superior resolution-sensitivity trade-off when imaging small field-of-view compared to conventional parallel-hole and fan-beam collimators. Besides the very successful application in small animal imaging, there has been a resurgence of the use of MPH collimators for clinical cardiac and brain studies, as well as other small field-of-view applications. This article reviews the basic principles of MPH collimators and introduces currently available and proposed clinical MPH SPECT systems
Glymphatic clearance estimated using diffusion tensor imaging along perivascular spaces is reduced after traumatic brain injury and correlates with plasma neurofilament light, a biomarker of injury severity
The glymphatic system is a perivascular fluid clearance system, most active during sleep, considered important for clearing the brain of waste products and toxins. Glymphatic failure is hypothesized to underlie brain protein deposition in neurodegenerative disorders like Alzheimer's disease. Preclinical evidence suggests that a functioning glymphatic system is also essential for recovery from traumatic brain injury, which involves release of debris and toxic proteins that need to be cleared from the brain. In a cross-sectional observational study, we estimated glymphatic clearance using diffusion tensor imaging along perivascular spaces, an MRI-derived measure of water diffusivity surrounding veins in the periventricular region, in 13 non-injured controls and 37 subjects who had experienced traumatic brain injury ∼5 months previously. We additionally measured the volume of the perivascular space using T2-weighted MRI. We measured plasma concentrations of neurofilament light chain, a biomarker of injury severity, in a subset of subjects. Diffusion tensor imaging along perivascular spaces index was modestly though significantly lower in subjects with traumatic brain injury compared with controls when covarying for age. Diffusion tensor imaging along perivascular spaces index was significantly, negatively correlated with blood levels of neurofilament light chain. Perivascular space volume did not differ in subjects with traumatic brain injury as compared with controls and did not correlate with blood levels of neurofilament light chain, suggesting it may be a less sensitive measure for injury-related perivascular clearance changes. Glymphatic impairment after traumatic brain injury could be due to mechanisms such as mislocalization of glymphatic water channels, inflammation, proteinopathy and/or sleep disruption. Diffusion tensor imaging along perivascular spaces is a promising method for estimating glymphatic clearance, though additional work is needed to confirm results and assess associations with outcome. Understanding changes in glymphatic functioning following traumatic brain injury could inform novel therapies to improve short-term recovery and reduce later risk of neurodegeneration
Quantitative Forecasting of Malaria Parasite Using Machine Learning Models: MLR, ANN, ANFIS and Random Forest
Malaria continues to be a major barrier to socioeconomic development in Africa, where its death rate is over 90%. The predictive power of many machine learning models—such as multi-linear regression (MLR), artificial neural networks (ANN), adaptive neuro-fuzzy inference systems (ANFISs) and Random Forest classifier—is investigated in this study using data from 2207 patients. The dataset was reduced from the initial dataset of thirty-two criteria samples to fifteen. Assessment measures such as the root mean square error (RMSE), mean square error (MSE), coefficient of determination (R2), and adjusted correlation coefficient R were used. ANFIS, Random Forest, MLR, and ANN are among the models. After training, ANN outperforms ANFIS (97%), MLR (92%), and Random Forest (68%) with the greatest R (99%) and R2 (99%), respectively. The testing stage confirms the superiority of ANN. The paper also presents a statistical forecasting sheet with few errors and excellent accuracy for MLR models. When the models are assessed with Random Forest, the latter shows the least results, thus broadening the modeling techniques and offering significant insights into the prediction of malaria and healthcare decision making. The outcomes of using machine learning models for precise and efficient illness prediction add to an expanding body of knowledge, assisting healthcare systems in making better decisions and allocating resources more effectively
The Systematic Review of Artificial Intelligence Applications in Breast Cancer Diagnosis
Several studies have demonstrated the value of artificial intelligence (AI) applications in breast cancer diagnosis. The systematic review of AI applications in breast cancer diagnosis includes several studies that compare breast cancer diagnosis and AI. However, they lack systematization, and each study appears to be conducted uniquely. The purpose and contributions of this study are to offer elaborative knowledge on the applications of AI in the diagnosis of breast cancer through citation analysis in order to categorize the main area of specialization that attracts the attention of the academic community, as well as thematic issue analysis to identify the species being researched in each category. In this study, a total number of 17,900 studies addressing breast cancer and AI published between 2012 and 2022 were obtained from these databases: IEEE, Embase: Excerpta Medica Database Guide-Ovid, PubMed, Springer, Web of Science, and Google Scholar. We applied inclusion and exclusion criteria to the search; 36 studies were identified. The vast majority of AI applications used classification models for the prediction of breast cancer. Howbeit, accuracy (99%) has the highest number of performance metrics, followed by specificity (98%) and area under the curve (0.95). Additionally, the Convolutional Neural Network (CNN) was the best model of choice in several studies. This study shows that the quantity and caliber of studies that use AI applications in breast cancer diagnosis will continue to rise annually. As a result, AI-based applications are viewed as a supplement to doctors’ clinical reasoning, with the ultimate goal of providing quality healthcare that is both affordable and accessible to everyone worldwide
Breast Cancer Screening Based on Supervised Learning and Multi-Criteria Decision-Making
On average, breast cancer kills one woman per minute. However, there are more reasons for optimism than ever before. When diagnosed early, patients with breast cancer have a better chance of survival. This study aims to employ a novel approach that combines artificial intelligence and a multi-criteria decision-making method for a more robust evaluation of machine learning models. The proposed machine learning techniques comprise various supervised learning algorithms, while the multi-criteria decision-making technique implemented includes the Preference Ranking Organization Method for Enrichment Evaluations. The Support Vector Machine, having achieved a net outranking flow of 0.1022, is ranked as the most favorable model for the early detection of breast cancer. The net outranking flow is the balance between the positive and negative outranking flows. This indicates that the higher the net flow, the better the alternative. K-nearest neighbor, logistic regression, and random forest classifier ranked second, third, and fourth, with net flows of 0.0316, −0.0032, and −0.0541, respectively. The least preferred alternative is the naive Bayes classifier with a net flow of −0.0766. The results obtained in this study indicate the use of the proposed method in making a desirable decision when selecting the most appropriate machine learning model. This gives the decision-maker the option of introducing new criteria into the decision-making process
Land Use and Land Cover Changes (LULCC), a Key to Understand Soil Erosion Intensities in the Maritsa Basin
Soil erosion is a major environmental and economic concern affecting all continents around the world. Soil loss facilitates land degradation, threatening both agricultural and natural environments in continental Europe. The overall objective of the present study is to reveal temporal changes of erosion risk in the Maritsa Basin, and also assess the temporal effects of land use and land cover changes (LULCC) on the gross erosion rate. The Revised Universal Soil Loss Equation (RUSLE) was utilized to monitor the distribution of the erosion risk zones and soil loss in the basin. The variables were either directly derived from the satellite imagery or computed using established equations or previous studies. The dynamic parameters were categorized into two-time frames as 1990 and 2015. The results indicate that the annual average erosion rate decreased from 0.895 to 0.828 t ha(-1) year(-1). This reduction is within the range of modeling error, potentially originated from input data uncertainties. The most extensive changes in the gross soil loss were found in both agricultural and artificial areas, which emphasize the significance of these two classes in soil erosion models. The research summarized here enhances understanding the impacts of land use and land cover (LULC) classes on erosion intensities
Diagnostic AI and Cardiac Diseases
(1) Background: The purpose of this study is to review and highlight recent advances in diagnostic uses of artificial intelligence (AI) for cardiac diseases, in order to emphasize expected benefits to both patients and healthcare specialists; (2) Methods: We focused on four key search terms (Cardiac Disease, diagnosis, artificial intelligence, machine learning) across three different databases (Pubmed, European Heart Journal, Science Direct) between 2017–2022 in order to reach relatively more recent developments in the field. Our review was structured in order to clearly differentiate publications according to the disease they aim to diagnose (coronary artery disease, electrophysiological and structural heart diseases); (3) Results: Each study had different levels of success, where declared sensitivity, specificity, precision, accuracy, area under curve and F1 scores were reported for every article reviewed; (4) Conclusions: the number and quality of AI-assisted cardiac disease diagnosis publications will continue to increase through each year. We believe AI-based diagnosis should only be viewed as an additional tool assisting doctors’ own judgement, where the end goal is to provide better quality of healthcare and to make getting medical help more affordable and more accessible, for everyone, everywhere
Evaluating the Performance of Deep Learning Frameworks for Malaria Parasite Detection Using Microscopic Images of Peripheral Blood Smears
Malaria is a significant health concern in many third-world countries, especially for pregnant women and young children. It accounted for about 229 million cases and 600,000 mortality globally in 2019. Hence, rapid and accurate detection is vital. This study is focused on achieving three goals. The first is to develop a deep learning framework capable of automating and accurately classifying malaria parasites using microscopic images of thin and thick peripheral blood smears. The second is to report which of the two peripheral blood smears is the most appropriate for use in accurately detecting malaria parasites in peripheral blood smears. Finally, we evaluate the performance of our proposed model with commonly used transfer learning models. We proposed a convolutional neural network capable of accurately predicting the presence of malaria parasites using microscopic images of thin and thick peripheral blood smears. Model evaluation was carried out using commonly used evaluation metrics, and the outcome proved satisfactory. The proposed model performed better when thick peripheral smears were used with accuracy, precision, and sensitivity of 96.97%, 97.00%, and 97.00%. Identifying the most appropriate peripheral blood smear is vital for improved accuracy, rapid smear preparation, and rapid diagnosis of patients, especially in regions where malaria is endemic