144 research outputs found
High-throughput cell-based compound screen identifies pinosylvin methyl ether and tanshinone IIA as inhibitors of castration-resistant prostate cancer
Current treatment options for castration-resistant prostate cancer (CRPC) are limited. In this study, a high-throughput screen of 4910 drugs and drug-like molecules was performed to identify antiproliferative compounds in androgen ablated prostate cancer cells. The effect of compounds on cell viability was compared in androgen ablated LNCaP prostate cancer cells and in LNCaP cells grown in presence of androgens as well as in two non-malignant prostate epithelial cells (RWPE-1 and EP156T). Validation experiments of cancer specific anti-proliferative compounds indicated pinosylvin methyl ether (PSME) and tanshinone IIA as potent inhibitors of androgen ablated LNCaP cell proliferation. PSME is a stilbene compound with no previously described antineoplastic activity whereas tanshinone IIA is currently used in cardiovascular disorders and proposed as a cancer drug. To gain insights into growth inhibitory mechanisms in CRPC, genome-wide gene expression analysis was performed in PSME- and tanshinone IIA-exposed cells. Both compounds altered the expression of genes involved in cell cycle and steroid and cholesterol biosynthesis in androgen ablated LNCaP cells. Decrease in androgen signalling was confirmed by reduced expression of androgen receptor and prostate specific antigen in PSME- or tanshinone IIA-exposed cells. Taken together, this systematic screen identified a novel anti-proliferative agent, PSME, for CRPC. Moreover, our screen confirmed tanshinone IIA as well as several other compounds as potential prostate cancer growth inhibitors also in androgen ablated prostate cancer cells. These results provide valuable starting points for preclinical and clinical studies for CRPC treatment
Phospholipase PLA2G7, associated with aggressive prostate cancer, promotes prostate cancer cell migration and invasion and is inhibited by statins
Prostate cancer is the second leading cause of cancer mortality in men in developed countries. Due to the heterogeneous nature of the disease, design of novel personalized treatments is required to achieve efficient therapeutic responses. We have recently identified phospholipase 2 group VII (PLA2G7) as a potential drug target especially in ERG oncogene positive prostate cancers. Here, the expression profile of PLA2G7 was studied in 1137 prostate cancer and 409 adjacent non-malignant prostate tissues using immunohistochemistry to validate its biomarker potential and putative association with disease progression. In order to reveal the molecular alterations induced by PLA2G7 impairment, lipidomic and gene expression profiling was performed in response to PLA2G7 silencing in cultured prostate cancer cells. Moreover, the antineoplastic effect of statins combined with PLA2G7 impairment was studied in prostate cancer cells to evaluate the potential of repositioning of in vivo compatible drugs developed for other indications towards anti-cancer purposes. The results indicated that PLA2G7 is a cancer-selective biomarker in 50% of prostate cancers and associates with aggressive disease. The alterations induced by PLA2G7 silencing highlighted the potential of PLA2G7 inhibition as an anti-proliferative, pro-apoptotic and anti-migratorial therapeutic approach in prostate cancer. Moreover, the anti-proliferative effect of PLA2G7 silencing was potentiated by lipid-lowering statins in prostate cancer cells. Taken together, our results support the potential of PLA2G7 as a biomarker and a drug target in prostate cancer and present a rationale for combining PLA2G7 inhibition with the use of statins in prostate cancer management
Integrative functional genomics analysis of sustained polyploidy phenotypes in breast cancer cells identifies an oncogenic profile for GINS2
Aneuploidy is among the most obvious differences between normal and cancer cells. However, mechanisms contributing to development and maintenance of aneuploid cell growth are diverse and incompletely understood. Functional genomics analyses have shown that aneuploidy in cancer cells is correlated with diffuse gene expression signatures and that aneuploidy can arise by a variety of mechanisms, including cytokinesis failures, DNA endoreplication and possibly through polyploid intermediate states. Here, we used a novel cell spot microarray technique to identify genes with a loss-of-function effect inducing polyploidy and/or allowing maintenance of polyploid cell growth of breast cancer cells. Integrative genomics profiling of candidate genes highlighted GINS2 as a potential oncogene frequently overexpressed in clinical breast cancers as well as in several other cancer types. Multivariate analysis indicated GINS2 to be an independent prognostic factor for breast cancer outcome (p = 0.001). Suppression of GINS2 expression effectively inhibited breast cancer cell growth and induced polyploidy. In addition, protein level detection of nuclear GINS2 accurately distinguished actively proliferating cancer cells suggesting potential use as an operational biomarker.Peer reviewe
Recombinant Peptide Mimetic NanoLuc Tracer for Sensitive Immunodetection of Mycophenolic Acid
Mycophenolic acid (MPA) is an immunosuppressant drug commonly used to prevent organ rejection in transplanted patients. MPA monitoring is of great interest due to its small therapeutic window. In this work, a phage-displayed peptide library was used to select cyclic peptides that bind to the MPA-specific recombinant antibody fragment (Fab) and mimic the behavior of MPA. After biopanning, several phage-displayed peptides were isolated and tested to confirm their epitope-mimicking nature in phage-based competitive immunoassays. After identifying the best MPA mimetic (ACEGLYAHWC with a disulfide constrained loop), several immunoassay approaches were tested, and a recombinant fusion protein containing the peptide sequence with a bioluminescent enzyme, NanoLuc, was developed. The recombinant fusion enabled its direct use as the tracer in competitive immunoassays without the need for secondary antibodies or further labeling. A bioluminescent sensor, using streptavidin-coupled magnetic beads for the immobilization of the biotinylated Fab antibody, enabled the detection of MPA with a detection limit of 0.26 ng mL(-1) and an IC50 of 2.9 +/- 0.5 ng mL(-1). The biosensor showed good selectivity toward MPA and was applied to the analysis of the immunosuppressive drug in clinical samples, of both healthy and MPA-treated patients, followed by validation by liquid chromatography coupled to diode array detection
PLA2G7 associates with hormone receptor negativity in clinical breast cancer samples and regulates epithelial-mesenchymal transition in cultured breast cancer cells
Breast cancer is the leading cause of cancer-related deaths in women due to distinct cancer subtypes associated with early recurrence and aggressive metastatic progression. High lipoprotein-associated phospholipase A2 (PLA2G7) expression has previously been associated with aggressive disease and metastasis in prostate cancer. Here, we explore the expression pattern and functional role of PLA2G7 in breast cancer. First, a bioinformatic analysis of genome-wide gene expression data from 970 breast samples was carried out to evaluate the expression pattern of PLA2G7 mRNA in breast cancer. Second, the expression profile of PLA2G7 was studied in 1042 breast cancer samples including 89 matched lymph node metastasis samples using immunohistochemistry. Third, the effect of PLA2G7 silencing on genome-wide gene expression profile was studied and validated in cultured breast cancer cells expressing PLA2G7 at high level. Last, the expression pattern of PLA2G7 mRNA was investigated in 24 nonmalignant tissue samples and 65 primary and 7 metastatic tumour samples derived from various organs using qRT-PCR. The results from clinical breast cancer samples indicated that PLA2G7 is overexpressed in a subset of breast cancer samples compared to its expression in benign breast tissue samples and that high PLA2G7 expression associated with hormone receptor negativity as well as with poor prognosis in a subset of breast cancer samples. In vitro functional studies highlighted the putative role of PLA2G7 in the regulation of epithelial-mesenchymal transition (EMT)-related signalling pathways, vimentin and E-cadherin protein expression as well as cell migration in cultured breast cancer cells. Furthermore, supporting the findings in breast and prostate cancer, high PLA2G7 mRNA expression was associated with metastatic cancer in four additional organs of origin. In conclusion, our results indicate that PLA2G7 is highly expressed in a subset of metastatic and aggressive breast cancers and in metastatic samples of various tissues of origin and promotes EMT and migration in cultured breast cancer cells
Identifying the druggable interactome of EWS-FLI1 reveals MCL-1 dependent differential sensitivities of Ewing sarcoma cells to apoptosis inducers
Ewing sarcoma (EwS) is an aggressive pediatric bone cancer in need of more effective therapies than currently available. Most research into novel targeted therapeutic approaches is focused on the fusion oncogene EWSR1-FLI1, which is the genetic hallmark of this disease. In this study, a broad range of 3,325 experimental compounds, among them FDA approved drugs and natural products, were screened for their effect on EwS cell viability depending on EWS-FLI1 expression. In a network-based approach we integrated the results from drug perturbation screens and RNA sequencing, comparing EWS-FLI1-high (normal expression) with EWS-FLI1-low (knockdown) conditions, revealing novel interactions between compounds and EWS-FLI1 associated biological processes. The top candidate list of druggable EWS-FLI1 targets included genes involved in translation, histone modification, microtubule structure, topoisomerase activity as well as apoptosis regulation. We confirmed our in silico results using viability and apoptosis assays, underlining the applicability of our integrative and systemic approach. We identified differential sensitivities of Ewing sarcoma cells to BCL-2 family inhibitors dependent on the EWS-FLI1 regulome including altered MCL-1 expression and subcellular localization. This study facilitates the selection of effective targeted approaches for future combinatorial therapies of patients suffering from Ewing sarcoma.(VLID)471264
- …