2 research outputs found

    Strongest atomic physics bounds on Non-Commutative Quantum Gravity Models

    Full text link
    Investigations of possible violations of the Pauli Exclusion Principle represent critical tests of the microscopic space-time structure and properties. Space-time non-commutativity provides a class of universality for several Quantum Gravity models. In this context the VIP-2 Lead experiment sets the strongest bounds, searching for Pauli Exclusion Principle violating atomic-transitions in lead, excluding the θ\theta-Poincar\'e Non Commutative Quantum Gravity models far above the Planck scale for non-vanishing θμν\theta_{\mu \nu} ``electric-like'' components, and up to 6.9⋅10−26.9 \cdot 10^{-2} Planck scales if θ0i=0\theta_{0i} = 0.Comment: 7 pages, 2 figure

    Experimental test of Non-Commutative Quantum Gravity by VIP-2 Lead

    Full text link
    Pauli Exclusion Principle (PEP) violations induced by space-time non-commutativity, a class of universality for several models of Quantum Gravity, are investigated by the VIP-2 Lead experiment at the Gran Sasso underground National Laboratory of INFN. The VIP-2 Lead experimental bound on the non-commutative space-time scale Λ\Lambda excludes θ\theta-Poincar\'e far above the Planck scale for non vanishing ``electric-like" components of θμν\theta_{\mu \nu}, and up to 6.9⋅10−26.9 \cdot 10^{-2} Planck scales if they are null. Therefore, this new bound represents the tightest one so far provided by atomic transitions tests. This result strongly motivates high sensitivity underground X-ray measurements as critical tests of Quantum Gravity and of the very microscopic space-time structure.Comment: 13 pages, 2 figures. arXiv admin note: substantial text overlap with arXiv:2209.0007
    corecore