613 research outputs found
Force and energy dissipation variations in non-contact atomic force spectroscopy on composite carbon nanotube systems
UHV dynamic force and energy dissipation spectroscopy in non-contact atomic
force microscopy were used to probe specific interactions with composite
systems formed by encapsulating inorganic compounds inside single-walled carbon
nanotubes. It is found that forces due to nano-scale van der Waals interaction
can be made to decrease by combining an Ag core and a carbon nanotube shell in
the Ag@SWNT system. This specific behaviour was attributed to a significantly
different effective dielectric function compared to the individual
constituents, evaluated using a simple core-shell optical model. Energy
dissipation measurements showed that by filling dissipation increases,
explained here by softening of C-C bonds resulting in a more deformable
nanotube cage. Thus, filled and unfilled nanotubes can be discriminated based
on force and dissipation measurements. These findings have two different
implications for potential applications: tuning the effective optical
properties and tuning the interaction force for molecular absorption by
appropriately choosing the filling with respect to the nanotube.Comment: 22 pages, 6 figure
On Maximal Unbordered Factors
Given a string of length , its maximal unbordered factor is the
longest factor which does not have a border. In this work we investigate the
relationship between and the length of the maximal unbordered factor of
. We prove that for the alphabet of size the expected length
of the maximal unbordered factor of a string of length~ is at least
(for sufficiently large values of ). As an application of this result, we
propose a new algorithm for computing the maximal unbordered factor of a
string.Comment: Accepted to the 26th Annual Symposium on Combinatorial Pattern
Matching (CPM 2015
Investigation of octupole vibrational states in 150Nd via inelastic proton scattering (p,p'g)
Octupole vibrational states were studied in the nucleus
via inelastic proton scattering with \unit[10.9]{MeV} protons which are an
excellent probe to excite natural parity states. For the first time in
, both the scattered protons and the rays were
detected in coincidence giving the possibility to measure branching ratios in
detail. Using the coincidence technique, the ratios of the decaying
transitions for 10 octupole vibrational states and other negative-parity states
to the yrast band were determined and compared to the Alaga rule. The positive
and negative-parity states revealed by this experiment are compared with
Interacting Boson Approximation (IBA) calculations performed in the (spdf)
boson space. The calculations are found to be in good agreement with the
experimental data, both for positive and negative-parity states
Words with the Maximum Number of Abelian Squares
An abelian square is the concatenation of two words that are anagrams of one
another. A word of length can contain distinct factors that
are abelian squares. We study infinite words such that the number of abelian
square factors of length grows quadratically with .Comment: To appear in the proceedings of WORDS 201
Distinction between the Poole-Frenkel and tunneling models of electric field-stimulated carrier emission from deep levels in semiconductors
The enhancement of the emission rate of charge carriers from deep-level defects in electric field is routinely used to determine the charge state of the defects. However, only a limited number of defects can be satisfactorily described by the Poole-Frenkel theory. An electric field dependence different from that expected from the Poole-Frenkel theory has been repeatedly reported in the literature, and no unambiguous identification of the charge state of the defect could be made. In this article, the electric field dependencies of emission of carriers from DX centers in AlxGa1-xAs:Te, Cu pairs in silicon, and Ge:Hg have been studied applying static and terahertz electric fields, and analyzed by using the models of Poole-Frenkel and phonon assisted tunneling. It is shown that phonon assisted tunneling and Poole-Frenkel emission are two competitive mechanisms of enhancement of emission of carriers, and their relative contribution is determined by the charge state of the defect and by the electric-field strength. At high-electric field strengths carrier emission is dominated by tunneling independently of the charge state of the impurity. For neutral impurities, where Poole-Frenkel lowering of the emission barrier does not occur, the phonon assisted tunneling model describes well the experimental data also in the low-field region. For charged impurities the transition from phonon assisted tunneling at high fields to Poole-Frenkel effect at low fields can be traced back. It is suggested that the Poole-Frenkel and tunneling models can be distinguished by plotting logarithm of the emission rate against the square root or against the square of the electric field, respectively. This analysis enables one to unambiguously determine the charge state of a deep-level defect
Observation of isotonic symmetry for enhanced quadrupole collectivity in neutron-rich 62,64,66Fe isotopes at N=40
The transition rates for the 2_{1}^{+} states in 62,64,66Fe were studied
using the Recoil Distance Doppler-Shift technique applied to projectile Coulomb
excitation reactions. The deduced E2 strengths illustrate the enhanced
collectivity of the neutron-rich Fe isotopes up to N=40. The results are
interpreted by the generalized concept of valence proton symmetry which
describes the evolution of nuclear structure around N=40 as governed by the
number of valence protons with respect to Z~30. The deformation suggested by
the experimental data is reproduced by state-of-the-art shell calculations with
a new effective interaction developed for the fpgd valence space.Comment: 4 pages, 2 figure
Spacelike distance from discrete causal order
Any discrete approach to quantum gravity must provide some prescription as to
how to deduce continuum properties from the discrete substructure. In the
causal set approach it is straightforward to deduce timelike distances, but
surprisingly difficult to extract spacelike distances, because of the unique
combination of discreteness with local Lorentz invariance in that approach. We
propose a number of methods to overcome this difficulty, one of which
reproduces the spatial distance between two points in a finite region of
Minkowski space. We provide numerical evidence that this definition can be used
to define a `spatial nearest neighbor' relation on a causal set, and conjecture
that this can be exploited to define the length of `continuous curves' in
causal sets which are approximated by curved spacetime. This provides evidence
in support of the ``Hauptvermutung'' of causal sets.Comment: 32 pages, 16 figures, revtex4; journal versio
Development of fluorocarbon evaporative cooling recirculators and controls for the ATLAS inner silicon tracker
We report on the development of evaporative fluorocarbon cooling recirculators and their control systems for the ATLAS inner silicon tracker. We have developed a prototype circulator using a dry, hermetic compressor with C/sub 3/F/sup 8/ refrigerant, and have prototyped the remote-control analog pneumatic links for the regulation of coolant mass flows and operating temperatures that will be necessary in the magnetic field and radiation environment around ATLAS. pressure and flow measurement and control use 150+ channels of standard ATLAS LMB ("Local Monitor Board") DAQ and DACs on a multi-drop CAN network administered through a BridgeVIEW user interface. A hardwired thermal interlock system has been developed to cut power to individual silicon modules should their temperatures exceed safe values. Highly satisfactory performance of the circulator under steady state, partial-load and transient conditions was seen, with proportional fluid flow tuned to varying circuit power. Future developments, including a 6 kW demonstrator with ~25 cooling circuits, are outlined
Scrible: Ultra-Accurate Error-Correction of Pooled Sequenced Reads
Abstract. We recently proposed a novel clone-by-clone protocol for de novo genome sequencing that leverages combinatorial pooling design to overcome the limitations of DNA barcoding when multiplexing a large number of samples on second-generation sequencing instruments. Here we address the problem of correcting the short reads obtained from our sequencing protocol. We introduce a novel algorithm called Scrible that exploits properties of the pooling design to accurately identify/correct sequencing errors and minimize the chance of “over-correcting”. Exper-imental results on synthetic data on the rice genome demonstrate that our method has much higher accuracy in correcting short reads com-pared to state-of-the-art error-correcting methods. On real data on the barley genome we show that Scrible significantly improves the decoding accuracy of short reads to individual BACs.
- …