6 research outputs found

    Novel dual-function CellDetect® staining technology: wedding morphology and tinctorial discrimination to detect cervical neoplasia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A persistent goal of oncologic histochemistry is to microscopically identify neoplasia tinctorially. Consequently, the newly developed CellDetect<sup>® </sup>staining technology, that appears to exhibit this property, warrants clinical evaluation. The objective of this study was to compare the diagnostic results using CellDetect<sup>® </sup>to the outcomes of standard microscopic examination based on hematoxylin and eosin (H&E) staining for the recognition of different squamous epithelial phenotypes of the uterine cervix.</p> <p>Methods</p> <p>Pairs of adjacent sections were made from 60 cervical biopsy cases that were diagnosed originally as either normal or neoplastic (CIN, SCC). One section of the pair was stained for H&E; the second section, with CellDetect<sup>®</sup>. Based on the examination of these pairs by two experienced pathologists, we investigated the following issues:(1) diagnostic agreement between the pathologists on each pair; (2) agreement between H&E and CellDetect<sup>® </sup>for each pair (3) tinctorial characteristics in micro-regions (n = 130) evaluated as either normal, reactive or neoplastic.</p> <p>Results</p> <p>Qualitatively, CellDetect<sup>®</sup>-stained preparations displayed cyto-morphological detail comparable to H&E images. Tinctorially, <it>non-neoplastic </it>cells appeared green/blue when stained withCellDetect<sup>®</sup>, contrasting with cytologically <it>neoplastic </it>foci, where cells of every grade were red/magenta in color. Due to these tinctorial characteristics, even small foci of neoplasia could be readily distinguished that were inconspicuous on H&E at low magnification. In some instances, this prompted re-examination of the H&E and revision of the diagnosis. Quantitatively, we found that despite diagnostic variation between pathologists, in about 3% of the cases, each pathologist made the same diagnosis regardless of whether CellDetect<sup>® </sup>or H&E was used, i.e. there was 100% self-agreement for each pathologist between stains. Particularly noteworthy was the finding of a 0% false negative rate, coupled with a 10-15% false positive rate. Regarding specificity, the performance in <it>reactive </it>squamous processes was similar to that observed for morphologically normal squamous epithelium.</p> <p>Conclusions</p> <p>In this first order assessment of clinical applicability, CellDetect<sup>® </sup>staining technology was at least comparable to results using H&E, and perhaps surperior. CellDetect<sup>® </sup>provided a uniquely useful tinctorial clue for the detection of neoplasia, which exhibited an impressive 0% false negative rate. A more extensive, blinded study is needed to confirm these promising findings.</p

    A color discriminating broad range cell staining technology for early detection of cell transformation

    No full text
    <b>Background:</b> Advanced diagnostic tools stand today at the heart of successful cancer treatment. CellDetect<sup>&#174;</sup> is a new histochemical staining technology that enables color discrimination between normal cells and a wide variety of neoplastic tissues. Using this technology, normal cells are colored blue/green, while neoplastic cells color red. This tinctorial difference coincides with clear morphological visualization properties, mainly in tissue samples. Here we show that the CellDetect<sup>&#174;</sup> technology can be deployed to distinguish normal cells from transformed cells and most significantly detect cells in their early pre-cancerous transformed state. <b> Materials and Methods:</b> In tissue culture, we studied the ability of the CellDetect<sup>&#174;</sup> technology to color discriminate foci in a number of two stage transformation systems as well as in a well defined cellular model for cervical cancer development, using HPV16 transformed keratinocytes. <b> Results:</b> In all these cellular systems, the CellDetect<sup>&#174;</sup> technology was able to sensitively show that all transformed cells, including pre-cancerous HPV 16 transformed cells, are colored red, whereas normal cells are colored blue/green. The staining technology was able to pick up: (i) early transformation events in the form of small type 1 foci (non-invasive, not piled up small, with parallel alignment of cells), and (ii) early HPV16 transformed cells, even prior to their ability to form colonies in soft agar. The study shows the utility of the CellDetect<sup>&#174;</sup> technology in early detection of transformation events

    Electrochemical lab on a chip for high-throughput analysis of anticancer drugs efficiency

    No full text
    Abstract We describe a new method for rapid, sensitive, and high-throughput detection of colon cancer cells&apos; response to differentiation therapy, using a novel electrochemical lab-on-a-chip system. Differentiation-inducing agents such as butyric acid and its derivatives were introduced to miniature colon cancer samples within the nanovolume chip chambers. The efficacy of each of the differentiationinducing agents was evaluated by electrochemical detection of the cellular enzymatic activity level, whereas reappearance of normal enzymatic activity denotes effective therapy. The results demonstrate the ability to evaluate simultaneously multiplex drug effects on miniature tumor samples (~15 cells) rapidly (5 minutes) and sensitively, with quantitative correlation between cancer cells&apos; number and the induced current. The use of miniature analytical devices is of special interest in clinically relevant samples, in that it requires less tissue for diagnosis, and enables high-throughput analysis and comparison of various drug effects on one small tumor sample, while maintaining uniform biological and environmental conditions
    corecore