5 research outputs found

    A Novel Proline-Rich Cathelicidin from the Alpaca Vicugna pacos with Potency to Combat Antibiotic-Resistant Bacteria: Mechanism of Action and the Functional Role of the C-Terminal Region

    No full text
    Over recent years, a growing number of bacterial species have become resistant to clinically relevant antibiotics. Proline-rich antimicrobial peptides (PrAMPs) having a potent antimicrobial activity and a negligible toxicity toward mammalian cells attract attention as new templates for the development of antibiotic drugs. Here, we mined genomes of all living Camelidae species and found a novel family of Bac7-like proline-rich cathelicidins which inhibited bacterial protein synthesis. The N-terminal region of a novel peptide from the alpaca Vicugna pacos named VicBac is responsible for inhibition of bacterial protein synthesis with an IC50 value of 0.5 µM in the E. coli cell-free system whereas the C-terminal region allows the peptide to penetrate bacterial membranes effectively. We also found that the full-length VicBac did not induce bacterial resistance after a two-week selection experiment, unlike the N-terminal truncated analog, which depended on the SbmA transport system. Both pro- and anti-inflammatory action of VicBac and its N-terminal truncated variant on various human cell types was found by multiplex immunoassay. The presence of the C-terminal tail in the natural VicBac does not provide for specific immune-modulatory effects in vitro but enhances the observed impact compared with the truncated analog. The pronounced antibacterial activity of VicBac, along with its moderate adverse effects on mammalian cells, make this molecule a promising scaffold for the development of peptide antibiotics

    Cytotoxic Potential of the Novel Horseshoe Crab Peptide Polyphemusin III

    No full text
    Biological activity of the new antimicrobial peptide polyphemusin III from the horseshoe crab Limulus polyphemus was examined against bacterial strains and human cancer, transformed, and normal cell cultures. Polyphemusin III has the amino acid sequence RRGCFRVCYRGFCFQRCR and is homologous to other β-hairpin peptides from the horseshoe crab. Antimicrobial activity of the peptide was evaluated and MIC (minimal inhibitory concentration) values were determined. IC50 (half-maximal inhibitory concentration) values measured toward human cells revealed that polyphemusin III showed a potent cytotoxic activity at concentrations of <10 μM. Polyphemusin III caused fast permeabilization of the cytoplasmic membrane of human leukemia cells HL-60, which was measured with trypan blue exclusion assay and lactate dehydrogenase-release assay. Flow cytometry experiments for annexin V-FITC/ propidium iodide double staining revealed that the caspase inhibitor, Z-VAD-FMK, did not abrogate disruption of the plasma membrane by polyphemusin III. Our data suggest that polyphemusin III disrupts the plasma membrane integrity and induces cell death that is apparently not related to apoptosis. In comparison to known polyphemusins and tachyplesins, polyphemusin III demonstrates a similar or lower antimicrobial effect, but significantly higher cytotoxicity against human cancer and transformed cells in vitro

    Novel Antimicrobial Peptides from the Arctic Polychaeta <i>Nicomache minor</i> Provide New Molecular Insight into Biological Role of the BRICHOS Domain

    No full text
    Endogenous antimicrobial peptides (AMPs) are among the earliest molecular factors in the evolution of animal innate immunity. In this study, novel AMPs named nicomicins were identified in the small marine polychaeta Nicomache minor in the Maldanidae family. Full-length mRNA sequences encoded 239-residue prepropeptides consisting of a putative signal sequence region, the BRICHOS domain within an acidic proregion, and 33-residue mature cationic peptides. Nicomicin-1 was expressed in the bacterial system, and its spatial structure was analyzed by circular dichroism and nuclear magnetic resonance spectroscopy. Nicomicins are unique among polychaeta AMPs scaffolds, combining an amphipathic N-terminal &#945;-helix and C-terminal extended part with a six-residue loop stabilized by a disulfide bridge. This structural arrangement resembles the Rana-box motif observed in the &#945;-helical host-defense peptides isolated from frog skin. Nicomicin-1 exhibited strong in vitro antimicrobial activity against Gram-positive bacteria at submicromolar concentrations. The main mechanism of nicomicin-1 action is based on membrane damage but not on the inhibition of bacterial translation. The peptide possessed cytotoxicity against cancer and normal adherent cells as well as toward human erythrocytes

    Design of Protegrin-1 Analogs with Improved Antibacterial Selectivity

    No full text
    Protegrin-1 (PG-1) is a cationic β-hairpin pore-forming antimicrobial peptide having a membranolytic mechanism of action. It possesses in vitro a potent antimicrobial activity against a panel of clinically relevant MDR ESKAPE pathogens. However, its extremely high hemolytic activity and cytotoxicity toward mammalian cells prevent the further development of the protegrin-based antibiotic for systemic administration. In this study, we rationally modulated the PG-1 charge and hydrophobicity by substituting selected residues in the central β-sheet region of PG-1 to design its analogs, which retain a high antimicrobial activity but have a reduced toxicity toward mammalian cells. In this work, eight PG-1 analogs with single amino acid substitutions and five analogs with double substitutions were obtained. These analogs were produced as thioredoxin fusions in Escherichia coli. It was shown that a significant reduction in hemolytic activity without any loss of antimicrobial activity could be achieved by a single amino acid substitution, V16R in the C-terminal β-strand, which is responsible for the PG-1 oligomerization. As the result, a selective analog with a ≥30-fold improved therapeutic index was obtained. FTIR spectroscopy analysis of analog, [V16R], revealed that the peptide is unable to form oligomeric structures in a membrane-mimicking environment, in contrast to wild-type PG-1. Analog [V16R] showed a reasonable efficacy in septicemia infection mice model as a systemic antibiotic and could be considered as a promising lead for further drug design
    corecore