12 research outputs found

    Innovative monitoring of atmospheric gaseous hydrogen fluoride

    Get PDF
    Hydrogen fluoride (HF) is a basic raw material for a wide variety of industrial products, with a worldwide production capacity of more than three million metric tonnes. A novel method for determining particulate fluoride and gaseous hydrogen fluoride in air is presented herewith. Air was sampled using miniaturised 13 mm Swinnex two-stage filter holders in a medium-flow pumping system and through the absorption of particulate fluoride and HF vapours on cellulose ester filters uncoated or impregnated with sodium carbonate. Furthermore, filter desorption from the holders and the extraction of the pentafluorobenzyl ester derivative based on solid-phase microextraction were performed using an innovative robotic system installed on an xyz autosampler on-line with gas chromatography (GC)/mass spectrometry (MS). After generating atmospheres of a known concentration of gaseous HF, we evaluated the agreement between the results of our sampling method and those of the conventional preassembled 37 mm cassette (±8.10%; correlation coefficient: 0.90). In addition, precision (relative standard deviation for n=10, 4.3%), sensitivity (0.2 μg/filter), and linearity (2.0–4000 μg/filter; correlation coefficient: 0.9913) were also evaluated. This procedure combines the efficiency of GC/MS systems with the high throughput (96 samples/day) and the quantitative accuracy of pentafluorobenzyl bromide on-sample derivatisation

    development of an innovative gas chromatography mass spectrometry method for assessment of formaldehyde in the workplace atmosphere

    Get PDF
    World consumption of formaldehyde (FA) is forecast to grow at an average annual rate of about 4% from 2015 to 2020 with world production to exceed 52 million tons in 2017. From the first day of January 2016, the Commission Regulation No. 91/2015 established the FA classification through an indication from European Chemical Agency as category 2 mutagenic and category 1B carcinogen. A novel method for the determination of gaseous FA in air is presented herewith. The sampling was carried out using a miniaturized cartridge by means of a medium-flow pumping system (1.0 L min-1, 5–60 min) and absorption of FA vapors on 2,4-dinitrophenylhydrazine. Cartridge desorption removing the excess derivatizing agent based upon solid-phase extraction was performed by an innovative xyz robotic system on-line with fast gas chromatography (GC)—mass spectrometry (MS). Through the generation of standard atmospheres of known concentration of FA, we evaluated the precision (relative standard deviation for n = 10, 8.8%), lower lim..

    Assessment of occupational exposure to gaseous peracetic acid

    Get PDF
    Objectives In order to assess short-term exposure to peracetic acid (PAA) in disinfection processes, the Authors compared 4 industrial hygiene monitoring methods to evaluate their proficiency in measuring airborne PAA concentrations. Material and Methods An active sampling by basic silica gel impregnated with methyl p-tolyl sulfoxide (MTSO), a passive solid phase micro-extraction technique using methyl p-tolyl sulfide (MTS) as on-fiber derivatization reagent, an electrochemical direct-reading PAA monitor, and a novel visual test strip PAA detector doped with 2,2’-azino-bis (3-ethylbenzothiazoline)-6-sulfonate were evaluated and tested over the range of 0.06–16 mg/m3, using dynamically generated PAA air concentrations. Results The linear regression analysis of linearity and accuracy showed that the 4 methods were suitable for PAA monitoring. Peracetic acid monitoring in several use applications showed that the PAA concentration (1.8 mg/m3) was immediately dangerous to life or health as proposed by the National Institute of Occupational Safety and Health, and was frequently exceeded in wastewater treatment (up to 7.33 mg/m3), and sometimes during food and beverage processes and hospital high-level disinfection operations (up to 6.8 mg/m3). Conclusions The methods were suitable for the quick assessment of acute exposure in PAA environmental monitoring and can assist in improving safety and air quality in the workplace where this disinfectant is used. These monitoring methods allowed the evaluation of changes to work out practices to reduce PAA vapor concentrations during the operations when workers are potentially overexposed to this strong antioxidant agent. Int J Occup Med Environ Health 2018;31(4):527–53

    Novi pristup procjeni profesionalne izloženosti antineoplasticima u bolničkom okruženju

    Get PDF
    Cytotoxic antineoplastic drugs (ADs) pose occupational risk and therefore require safe handling practices. We created, optimised, and validated an innovative monitoring protocol for simultaneously assessing 21 ADs in the healthcare environment, and also proposed surface exposure levels (SELs) to facilitate the interpretation of monitoring results, as there are currently no occupational exposure limits for ADs. The environmental AD monitoring data were collected in nine Italian hospitals between 2008 and 2017 and include 74,565 measurements in 4,814 wipe samples. Excellent overall recovery and sensitivity of the analytical methods along with innovative desorption automation make this protocol useful for routine monitoring. AD contamination was found in 3,081 measurements, confirming potential exposure in healthcare workers. Samples taken at the beginning and the end of work shifts, allowed to calculate 75th and 90th percentile values for each ADs both in preparation and administration units and we created a traffic-light colour-coding system to facilitate interpretation of the findings. The introduction of SELs will provide a solid basis for improving occupational safety and focusing on contamination control.Zbog profesionalnih rizika koje donose, s citotoksičnim antineoplasticima potrebno je sigurno rukovati. U ovom članku predstavljamo validirani inovativan protokol kojim se istodobno mogu pratiti razine dvadeset jednog antineoplastika u zdravstvenim ustanovama te predlažemo razine površinske izloženosti (engl. surface exposure levels, krat. SELs) koje bi trebale olakšati tumačenje dobivenih rezultata praćenja, budući da trenutačno nisu propisane granične vrijednosti profesionalne izloženosti antineoplasticima. Rezultate praćenja onečišćenja antineoplasticima prikupili smo od devet talijanskih bolnica od 2008. do 2017., a obuhvaćaju 74.565 mjerenja 4.814 uzoraka prikupljenih brisanjem površina namjenskim maramicama (brisom). Ovakav je protokol upravo zbog izvrsne iskorištenosti i osjetljivosti analitičkih metoda te inovativne automatizacije desorpcije pogodan za rutinsko praćenje izloženosti u bolničkom okruženju. Onečišćenje antineoplasticima utvrđeno je u 3.081 mjerenju, što potvrđuje rizik od izloženosti u zdravstvenih radnika. Uzimanjem uzoraka na početku i kraju radne smjene omogućen je izračun vrijednosti unutar 75. i 90. percentila za svaki antineoplastik za jedinice u kojima se oni pripremaju i primjenjuju. Na temelju tih izračuna osmislili smo semaforski sustav boja koji olakšava tumačenje rezultata, a predložene razine površinske izloženosti poslužit će kao dobar temelj za poboljšanje sigurnosti na radnome mjestu i smanjenje onečišćenja

    Low-dose benzene exposure monitoring of oil refinery workers: inhalation and biomarkers

    Get PDF
    Airborne benzene in workplaces has progressively decreased due to preventive actions and the redesigning of facility processes. Professionals who assess occupational exposure should select techniques to detect benzene levels comparable to ambient air exposure. Thus, sensitive biomarkers are needed to discriminate the effects of confounding factors, such as smoking or sorbic acid (SA). In order to identify sensitive biomarkers and to study their correlation with confounding factors, 23 oil refinery workers were enrolled in the study; their airborne benzene exposures and biomarkers were monitored. Urinary benzene (U-B), t,t-muconic acid (t,t-MA), and S-phenylmercapturic acid (SPMA) were quantified. Urinary cotinine (U-C) and t,t-sorbic acid (t,t-SA) were evaluated to flag smoking and SA intake, respectively. The benzene measured in personal inhalation sampling ranged from 0.6 to 83.5 (median 1.7) µg/m3. The concentration range of the biomarkers, U-B, t,t-MA, and SPMA, were 18–4893 ng/m3, <10–79.4 µg/g creatinine, and <0.5–3.96 µg/g creatinine, respectively. Pearson tests were carried out; the best correlations were between airborne benzene and U-B (µg/L r = 0.820, p < 0.001) and between benzene and SPMA (g/L r = 0.812, p < 0.001), followed by benzene and t,t-MA (mg/L r = 0.465, p = 0.039). From our study, U-B and SPMA result to be the most reliable biomarkers to assess the internal number of low doses of benzene exposure, thanks to their specificity and sensitivity

    Innovative Monitoring of Atmospheric Gaseous Hydrogen Fluoride

    Full text link
    Hydrogen fluoride (HF) is a basic raw material for a wide variety of industrial products, with a worldwide production capacity of more than three million metric tonnes. A novel method for determining particulate fluoride and gaseous hydrogen fluoride in air is presented herewith. Air was sampled using miniaturised 13 mm Swinnex two-stage filter holders in a medium-flow pumping system and through the absorption of particulate fluoride and HF vapours on cellulose ester filters uncoated or impregnated with sodium carbonate. Furthermore, filter desorption from the holders and the extraction of the pentafluorobenzyl ester derivative based on solid-phase microextraction were performed using an innovative robotic system installed on an xyz autosampler on-line with gas chromatography (GC)/mass spectrometry (MS). After generating atmospheres of a known concentration of gaseous HF, we evaluated the agreement between the results of our sampling method and those of the conventional preassembled 37 mm cassette (±8.10%; correlation coefficient: 0.90). In addition, precision (relative standard deviation for = 10, 4.3%), sensitivity (0.2 g/filter), and linearity (2.0-4000 g/filter; correlation coefficient: 0.9913) were also evaluated. This procedure combines the efficiency of GC/MS systems with the high throughput (96 samples/day) and the quantitative accuracy of pentafluorobenzyl bromide on-sample derivatisation

    An Integrated Air Monitoring Approach for Assessment of Formaldehyde in the Workplace

    Full text link
    The aim of this study is to validate an integrated air monitoring approach for assessing airborne formaldehyde (FA) in the workplace. An active sampling by silica gel impregnated with 2,4-dinitrophenylhydrazine, a passive solid phase microextraction technique using O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine as on-fiber derivatization reagent, an electrochemical direct-reading monitor, and an enzyme-based badge were evaluated and tested over a range of 0.020–5.12 ppm, using dynamically generated FA air concentrations. Simple linear regression analysis showed the four methods were suitable for evaluating airborne FA. Personal and area samplings in 12 anatomy pathology departments showed that the international occupational exposure limits in the GESTIS database were frequently exceeded. This monitoring approach would allow a fast, easy-to-use, and economical evaluation of both current work practices and eventual changes made to reduce FA vapor concentrations. Keywords: air monitoring, chromatography, electrochemical sensor, enzyme-based badge, formaldehyd

    Analytical strategies for assessing occupational exposure to antineoplastic drugs in healthcare workplaces

    Full text link
    Background Cytotoxic antineoplastic drugs (ADs), widely used in treating cancer, are considered hazardous in the workplace and thus require safe handling practices. An analytical protocol for environmental and biological AD monitoring in the healthcare environment has been developed, since Europe lacks clear guidelines and regulations for cytostatic preparation and handling. Material and Methods Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used for measuring contemporaneously 20 multi-class cytostatic compounds and urinary α-fluoro-β-alanine, whereas platinum was detected by inductively coupled plasma mass spectrometry (ICP-MS). Sampling procedures and analytical conditions were optimized and the assays were validated. Environmental AD monitoring data, collected in 2009–2017, for a total of 3749 wipe tests and 57 720 determinations, was evaluated. Results The proportion of positive samples gradually decreased from 11.7% in 2010 to 1% in 2017, however, 2266 determinations were positive. No urine sample had detectable concentrations of any of the 4 drugs considered (0/398 samples). Conclusions These improvements are so large that the key role played by the new, more stringent rules for preparing and administering ADs is evident. Hence, the analytical method involving multi-element determinations allows for a more thorough and complete investigation into the AD contamination of work environments. Med Pr 2018;69(6):589–60
    corecore