123 research outputs found
Novel compositions and methods for trehalose phospholipids
Provided herein are compositions of trehalose phospholipids and uses thereof, e.g., compounds and compositions comprising 6,6'-diphosphatidyltrehalose (diPT) and analogs thereof with modifications of the diPT chemical scaffold, that bind and agonize Mincle, and the use thereof as adjuvants
αβ T cell receptor recognition of self-phosphatidylinositol presented by CD1b
CD1 glycoproteins present lipid-based antigens to T-cell receptors (TCRs). A role for CD1b in T-cell–mediated autoreactivity was proposed when it was established that CD1b can present self-phospholipids with short alkyl chains (∼C34) to T cells; however, the structural characteristics of this presentation and recognition are unclear. Here, we report the 1.9 Å resolution binary crystal structure of CD1b presenting a self-phosphatidylinositol-C34:1 and an endogenous scaffold lipid. Moreover, we also determined the 2.4 Å structure of CD1b–phosphatidylinositol complexed to an autoreactive αβ TCR, BC8B. We show that the TCR docks above CD1b and directly contacts the presented antigen, selecting for both the phosphoinositol headgroup and glycerol neck region via antigen remodeling within CD1b and allowing lateral escape of the inositol moiety through a channel formed by the TCR α-chain. Furthermore, through alanine scanning mutagenesis and surface plasmon resonance, we identified key CD1b residues mediating this interaction, with Glu-80 abolishing TCR binding. We in addition define a role for both CD1b α1 and CD1b α2 molecular domains in modulating this interaction. These findings suggest that the BC8B TCR contacts both the presented phospholipid and the endogenous scaffold lipid via a dual mechanism of corecognition. Taken together, these data expand our understanding into the molecular mechanisms of CD1b-mediated T-cell autoreactivity
Subpopulations of bovine WC1+ γδ T cells rather than CD4+CD25highFoxp3+ T cells act as immune regulatory cells ex vivo
Regulatory T cells (Treg) are regarded essential components for maintenance of immune homeostasis. Especially CD4+CD25high T cells are considered to be important regulators of immune reactivity. In humans and rodents these natural Treg are characterized by their anergic nature, defined as a non-proliferative state, suppressive function and expression of Foxp3. In this study the potential functional role of flowcytometry-sorted bovine white blood cell populations, including CD4+CD25high T cells and γδ T cell subpopulations, as distinct ex vivo regulatory cells was assessed in co-culture suppression assays. Our findings revealed that despite the existence of a distinct bovine CD4+CD25high T cell population, which showed Foxp3 transcription/expression, natural regulatory activity did not reside in this cell population. In bovine co-culture suppression assays these cells were neither anergic nor suppressive. Subsequently, the following cell populations were tested functionally for regulatory activity: CD4+CD25low T cells, WC1+, WC1.1+ and WC1.2+ γδ T cells, NK cells, CD8+ T cells and CD14+ monocytes. Only the WC1.1+ and WC1.2+ γδ T cells and CD14+ monocytes proved to act as regulatory cells in cattle, which was supported by the fact that these regulatory cells showed IL-10 transcription/expression. In conclusion, our data provide first evidence that cattle CD4+CD25highFoxp3+ and CD4+CD25low T cells do not function as Treg ex vivo. The bovine Treg function appears to reside in the γδ T cell population, more precisely in the WC1.1+ and the WC1.2+ subpopulation, major populations present in blood of cattle in contrast to non-ruminant species
αβ T cell receptor recognition of self-phosphatidylinositol presented by CD1b
CD1 glycoproteins present lipid-based antigens to T cell receptors (TCRs). A role for CD1b in T cell-mediated autoreactivity was proposed when it was established that CD1b can present self-phospholipids with short alkyl chains (∼C34) to T cells; however, the structural characteristics of this presentation and recognition are unclear. Here we report the 1.9 Å-resolution binary crystal structure of CD1b presenting a self-phosphatidylinositol-C34:1 (PI) and an endogenous scaffold lipid. Moreover, we also determined the 2.4 Å structure of CD1b-PI complexed to an autoreactive αβ TCR, BC8B. We show the TCR docks above CD1b and directly contacts the presented antigen, selecting for both the phosphoinositol headgroup and glycerol neck region via antigen remodelling within CD1b and allowing lateral escape of the inositol moiety through a channel formed by the TCR α-chain. Furthermore, through alanine scanning mutagenesis and surface plasmon resonance, we identified key CD1b residues mediating this interaction, with Glu-80 abolishing TCR binding. We additionally define a role for both CD1b α1 and α2 molecular domains in modulating this interaction. These findings suggest the BC8B TCR contacts both the presented phospholipid and the endogenous scaffold lipid via a dual mechanism of co-recognition. Taken together, these data expand our understanding into the molecular mechanisms of CD1b-mediated T cell autoreactivity
Two canine CD1a proteins are differentially expressed in skin
Lipid antigens are presented to T cells by the CD1 family of proteins. In this study, we characterize the complete dog (Canis familiaris) CD1 locus, which is located on chromosome 38. The canine locus contains eight CD1A genes (canCD1A), of which five are pseudogenes, one canCD1B, one canCD1C, one canCD1D, and one canCD1E gene. In vivo expression of canine CD1 proteins was shown for canCD1a6, canCD1a8, and canCD1b, using a panel of anti-CD1 monoclonal antibodies (mAbs). CanCD1a6 and canCD1a8 are recognized by two distinct mAbs. Furthermore, we show differential transcription of the three canCD1A genes in canine tissues. In canine skin, the transcription level of canCD1A8 was higher than that of canCD1A6, and no transcription of canCD1A2 was detected. Based on protein modeling and protein sequence alignment, we predict that both canine CD1a proteins can bind different glycolipids in their groove. Besides differences in ectodomain structure, we observed the unique presence of three types of cytoplasmic tails encoded by canCD1A genes. cDNA sequencing and expressed sequence tag sequences confirmed the existence of a short, human CD1a-like cytoplasmic tail of four amino acids, of an intermediate length form of 15 amino acids, and of a long form of 31 amino acids
Total Synthesis of a Mycolic Acid from Mycobacterium tuberculosis
In Mycobacterium tuberculosis, mycolic acids and their glycerol, glucose, and trehalose esters ("cord factor") form the main part of the mycomembrane. Despite their first isolation almost a century ago, full stereochemical evaluation is lacking, as is a scalable synthesis required for accurate immunological, including vaccination, studies. Herein, we report an efficient, convergent, gram-scale synthesis of four stereo-isomers of a mycolic acid and its glucose ester. Binding to the antigen presenting protein CD1b and T cell activation studies are used to confirm the antigenicity of the synthetic material. The absolute stereochemistry of the syn-methoxy methyl moiety in natural material is evaluated by comparing its optical rotation with that of synthetic material
Conservation of mucosal associated invariant T (MAIT) cells and the MR1 restriction element in ruminants, and abundance of MAIT cells in spleen
MHC-related protein 1 (MR1) is a highly conserved MHC class I-like molecule. Human and murine mucosal associated invariant T (MAIT) cells are restricted by MR1 and express an invariant T cell receptor. Even though MR1 protein expression on the cell surface has not been demonstrated in vivo or ex vivo, it is assumed that MR1 presents a bacterial antigen from the intestinal lumen to MAIT cells because MAIT cells are present in the lamina propria and their expansion is dependent on the presence of intestinal micro flora. The existence of bovine MAIT cells and MR1 has been demonstrated recently although ovine MAIT cells and MR1 have not yet been described. We cloned bovine and ovine MR1 transcripts, including splice variants, and identified an anti human MR1 antibody that recognizes cells transfected with the bovine homolog. Using this antibody, no MR1 staining was detected using cells freshly isolated from blood, thymus, spleen, colon, ileum, and lymph node. MAIT cells are known to be enriched in the CD4/CD8 double negative peripheral blood T cell population, but their relative abundance in different tissues is not known. Comparison of the amount of MAIT cell-specific TCR transcript to the amount of constant α chain transcript revealed that numbers of MAIT cells are low in neonates and increase by 3-weeks of age. In 3-month old animals, MAIT cells are abundant in spleen and less so in ileum, peripheral blood, lymph node, colon, and thymus
- …