4 research outputs found

    Double-loop hysteresis of multisite dilute Sr(Y1−x_{1-x}Dyx_x)2_2O4_4 single crystal Kramers paramagnets: electron-phonon interaction, quantum tunneling and cross-relaxation

    Full text link
    Experimental and theoretical studies of the dynamic magnetization in swept magnetic fields of the orthorhombic SrY2_2O4_4 single-crystals doped with the Dy3+^{3+} Kramers ions (0.01 and 0.5 at.%) with natural abundances of even and odd Dy isotopes are presented. Impurity ions substitute for Y3+^{3+} ions at two nonequivalent crystallographic sites with the same local CsC_s symmetry but strongly different crystal fields. Well pronounced double-loop hysteresis is observed at temperatures 2, 4, 5 and 6 K for sweeping rates of 5 and 1 mT/s. The microscopic model of spectral, magnetic and kinetic properties of Dy3+^{3+} ions is developed based on the results of EPR, site selective optical spectra and magnetic relaxation measurements. The derived approach to the dynamic magnetization in the sweeping field based on the numerical solution of generalized master equations with time-dependent transition probabilities induced by the electron-phonon interaction, quantum tunneling and cross-relaxation allowed us to reproduce successfully the evolution of the hysteresis loop shape with temperature, sweeping rate and concentration of paramagnetic ions.Comment: 11 pages, 6 figures, 2 tables, 52 reference

    A Series of Field-Induced Single-Ion Magnets Based on the Seven-Coordinate Co(II) Complexes with the Pentadentate (N3O2) H2dapsc Ligand

    No full text
    A series of five new mononuclear pentagonal bipyramidal Co(II) complexes with the equatorial 2,6-diacetylpyridine bis(semicarbazone) ligand (H2dapsc) and various axial pseudohalide ligands (SCN, SeCN, N(CN)2, C(CN)3, and N3) was prepared and structurally characterizated: [Co(H2dapsc)(SCN)2]∙0.5C2H5OH (1), [Co(H2dapsc)(SeCN)2]∙0.5C2H5OH (2), [Co(H2dapsc)(N(CN)2)2]∙2H2O (3), [Co(H2dapsc)(C(CN)3)(H2O)](NO3)∙1.16H2O (4), and {[Co(H2dapsc)(H2O)(N3)][Co(H2dapsc)(N3)2]}N3∙4H2O (5). The combined analyses of the experimental DC and AC magnetic data of the complexes (1–5) and two other earlier described those of this family [Co(H2dapsc)(H2O)2)](NO3)2∙2H2O (6) and [Co(H2dapsc)(Cl)(H2O)]Cl∙2H2O (7), their theoretical description and the ab initio CASSCF/NEVPT2 calculations reveal large easy-plane magnetic anisotropies for all complexes (D = + 35 − 40 cm−1). All complexes under consideration demonstrate slow magnetic relaxation with dominant Raman and direct spin–phonon processes at static magnetic field and so they belong to the class of field-induced single-ion magnets (SIMs)
    corecore