3 research outputs found

    BAFF system expression in double negative 2, activated naïve and activated memory B cells in systemic lupus erythematosus

    Get PDF
    IntroductionB cell activating factor (BAFF) has an important role in normal B cell development. The aberrant expression of BAFF is related with the autoimmune diseases development like Systemic Lupus Erythematosus (SLE) for promoting self-reactive B cells survival. BAFF functions are exerted through its receptors BAFF-R (BR3), transmembrane activator calcium modulator and cyclophilin ligand interactor (TACI) and B cell maturation antigen (BCMA) that are reported to have differential expression on B cells in SLE. Recently, atypical B cells that express CD11c have been associated with SLE because they are prone to develop into antibody-secreting cells, however the relationship with BAFF remains unclear. This study aims to analyze the BAFF system expression on CXCR5- CD11c+ atypical B cell subsets double negative 2 (DN2), activated naïve (aNAV), switched memory (SWM) and unswitched memory (USM) B cells.MethodsForty-five SLE patients and 15 healthy subjects (HS) were included. Flow cytometry was used to evaluate the expression of the receptors in the B cell subpopulations. Enzyme-linked immunosorbent assay (ELISA) was performed to quantify the soluble levels of BAFF (sBAFF) and IL-21.ResultsWe found increased frequency of CXCR5- CD11c+ atypical B cell subpopulations DN2, aNAV, SWM and USM B cells in SLE patients compared to HS. SLE patients had increased expression of membrane BAFF (mBAFF) and BCMA receptor in classic B cell subsets (DN, NAV, SWM and USM). Also, the CXCR5+ CD11c- DN1, resting naïve (rNAV), SWM and USM B cell subsets showed higher mBAFF expression in SLE. CXCR5- CD11c+ atypical B cell subpopulations DN2, SWM and USM B cells showed strong correlations with the expression of BAFF receptors. The atypical B cells DN2 in SLE showed significant decreased expression of TACI, which correlated with higher IL-21 levels. Also, lower expression of TACI in atypical B cell DN2 was associated with high disease activity.DiscussionThese results suggest a participation of the BAFF system in CXCR5- CD11c+ atypical B cell subsets in SLE patients. Decreased TACI expression on atypical B cells DN2 correlated with high disease activity in SLE patients supporting the immunoregulatory role of TACI in autoimmunity

    miR-23b-3p, miR-124-3p and miR-218-5p Synergistic or Additive Effects on Cellular Processes That Modulate Cervical Cancer Progression? A Molecular Balance That Needs Attention

    No full text
    In cervical cancer (CC), miR-23b-3p, miR-124-3p, and miR-218-5p have been found to act as tumor suppressors by regulating cellular processes related to progression and metastasis. The objective of the present review is to provide an update on the experimental evidence about the role of miR-23b-3p, miR-124-3p, and miR-218-5p in the regulation of CC progression. Additionally, we present the results of a bioinformatic analysis that suggest that these miRNAs have a somewhat redundant role in the same cellular processes that may result in a synergistic effect to promote CC progression. The results indicate that specific and common target genes for miR-23b-3p, miR-124-3p, and miR-218-5p regulate proliferation, migration, apoptosis, and angiogenesis, all processes that are related to CC maintenance and progression. Furthermore, several target genes may regulate cancer-related signaling pathways. We found that a total of 271 proteins encoded by the target mRNAs of miR-23b-3p, miR-124-3p, or miR-218-5p interact to regulate the cellular processes previously mentioned, and some of these proteins are regulated by HPV-16 E7. Taken together, information analysis indicates that miR-23b-3p, miR-124-3p, and miR-218-5p may potentiate their effects to modulate the cellular processes related to the progression and maintenance of CC with and without HPV-16 involvement

    Altered <i>PTPN22</i> and <i>IL10</i> mRNA Expression Is Associated with Disease Activity and Renal Involvement in Systemic Lupus Erythematosus

    No full text
    Systemic lupus erythematosus (SLE) is a complex autoimmune disease with very heterogeneous clinical behavior between affected individuals. Therefore, the search for biomarkers clinically useful for the diagnosis, prognosis, and monitoring of the disease is necessary. Here, we determined the association between PTPN22, IL10, OAS2, and CD70 mRNA expression with the clinical characteristics and with the serum levels of IL-10, IFN-γ, and IL-17 in SLE patients. Forty patients with SLE and 34 control subjects (CS) were included, mRNA expression was determined by real-time qPCR and cytokine levels were quantified by a multiplex bead-based immunoassay. Compared to CS, SLE patients showed increased IL10 mRNA and high IL-10 and IL-17 serum levels; in contrast, PTPN22 mRNA and IFN-γ were decreased. PTPN22 and IL10 gene expression was negatively correlated with Mex-SLEDAI score and were notably downregulated in SLE patients with lupus nephritis. Interestingly, SLE patients with renal damage were the ones with the lowest levels of PTPN22 and IL10 mRNA and the highest SLEDAI scores. No associations were observed for OAS2 and CD70 mRNA and IL-10, IL-17, and IFN-γ. In conclusion, we suggest that the assessment of IL10 and PTPN22 mRNA could be useful for monitoring disease activity in SLE patients showing renal involvement
    corecore