4 research outputs found
Fatality rate and predictors of mortality in an Italian cohort of hospitalized COVID-19 patients
Clinical features and natural history of coronavirus disease 2019 (COVID-19) differ widely among different countries and during different phases of the pandemia. Here, we aimed to evaluate the case fatality rate (CFR) and to identify predictors of mortality in a cohort of COVID-19 patients admitted to three hospitals of Northern Italy between March 1 and April 28, 2020. All these patients had a confirmed diagnosis of SARS-CoV-2 infection by molecular methods. During the study period 504/1697 patients died; thus, overall CFR was 29.7%. We looked for predictors of mortality in a subgroup of 486 patients (239 males, 59%; median age 71 years) for whom sufficient clinical data were available at data cut-off. Among the demographic and clinical variables considered, age, a diagnosis of cancer, obesity and current smoking independently predicted mortality. When laboratory data were added to the model in a further subgroup of patients, age, the diagnosis of cancer, and the baseline PaO2/FiO2 ratio were identified as independent predictors of mortality. In conclusion, the CFR of hospitalized patients in Northern Italy during the ascending phase of the COVID-19 pandemic approached 30%. The identification of mortality predictors might contribute to better stratification of individual patient risk
Large-Scale Plasma Analysis Revealed New Mechanisms and Molecules Associated with the Host Response to SARS-CoV-2
The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread to nearly every continent, registering over 1,250,000 deaths worldwide. The effects of SARS-CoV-2 on host targets remains largely limited, hampering our understanding of Coronavirus Disease 2019 (COVID-19) pathogenesis and the development of therapeutic strategies. The present study used a comprehensive untargeted metabolomic and lipidomic approach to capture the host response to SARS-CoV-2 infection. We found that several circulating lipids acted as potential biomarkers, such as phosphatidylcholine 14:0_22:6 (area under the curve (AUC) = 0.96), phosphatidylcholine 16:1_22:6 (AUC = 0.97), and phosphatidylethanolamine 18:1_20:4 (AUC = 0.94). Furthermore, triglycerides and free fatty acids, especially arachidonic acid (AUC = 0.99) and oleic acid (AUC = 0.98), were well correlated to the severity of the disease. An untargeted analysis of non-critical COVID-19 patients identified a strong alteration of lipids and a perturbation of phenylalanine, tyrosine and tryptophan biosynthesis, phenylalanine metabolism, aminoacyl-tRNA degradation, arachidonic acid metabolism, and the tricarboxylic acid (TCA) cycle. The severity of the disease was characterized by the activation of gluconeogenesis and the metabolism of porphyrins, which play a crucial role in the progress of the infection. In addition, our study provided further evidence for considering phospholipase A2 (PLA2) activity as a potential key factor in the pathogenesis of COVID-19 and a possible therapeutic target. To date, the present study provides the largest untargeted metabolomics and lipidomics analysis of plasma from COVID-19 patients and control groups, identifying new mechanisms associated with the host response to COVID-19, potential plasma biomarkers, and therapeutic targets
Simple Parameters from Complete Blood Count Predict In-Hospital Mortality in COVID-19
Introduction. The clinical course of Coronavirus Disease 2019 (COVID-19) is highly heterogenous, ranging from asymptomatic to fatal forms. The identification of clinical and laboratory predictors of poor prognosis may assist clinicians in monitoring strategies and therapeutic decisions. Materials and Methods. In this study, we retrospectively assessed the prognostic value of a simple tool, the complete blood count, on a cohort of 664 patients (F 260; 39%, median age 70 (56-81) years) hospitalized for COVID-19 in Northern Italy. We collected demographic data along with complete blood cell count; moreover, the outcome of the hospital in-stay was recorded. Results. At data cut-off, 221/664 patients (33.3%) had died and 453/664 (66.7%) had been discharged. Red cell distribution width (RDW) (χ2 10.4; p4.68 was characterized by an odds ratio for in-hospital mortality OR=3.40 (2.40-4.82), while the OR for a RDW>13.7% was 4.09 (2.87-5.83); a platelet count>166,000/μL was, conversely, protective (OR: 0.45 (0.32-0.63)). Conclusion. Our findings arise the opportunity of stratifying COVID-19 severity according to simple lab parameters, which may drive clinical decisions about monitoring and treatment