24 research outputs found

    Size-dependent surface luminescence in ZnO nanowires

    Get PDF
    Nanometer sized whiskers (nanowires) offer a vehicle for the study of size-dependent phenomena. While quantum-size effects are commonly expected and easily predicted, size reduction also causes more atoms to be closer to the surface. Here we show that intensity relations of below-band-gap and band-edge luminescence in ZnO nanowires depend on the wire radius. Assuming a surface layer wherein the surface-recombination probability is 1 (surface-recombination approximation), we explain this size effect in terms of bulk-related to surface-related material-volume ratio that varies almost linearly with the radius. This relation supports a surface-recombination origin for the deep-level luminescence we observe. The weight of this surface-luminescence increases as the wire radius decreases at the expense of the band-edge emission. Using this model, we obtain a radius of 30 nm, below which in our wires surface-recombination prevails. More generally, our results suggest that in quantum-size nanowires, surface-recombination may entirely quench band-to-band recombination, presenting an efficient sink for charge carriers that unless deactivated may be detrimental for electronic devices

    A two-colour heterojunction unipolar nanowire light-emitting diode by tunnel injection

    Get PDF
    We present a systematic study of the current-voltage characteristics and electroluminescence of gallium nitride (GaN) nanowire on silicon (Si) substrate heterostructures where both semiconductors are n-type. A novel feature of this device is that by reversing the polarity of the applied voltage the luminescence can be selectively obtained from either the nanowire or the substrate. For one polarity of the applied voltage, ultraviolet (and visible) light is generated in the GaN nanowire, while for the opposite polarity infrared light is emitted from the Si substrate. We propose a model, which explains the key features of the data, based on electron tunnelling from the valence band of one semiconductor into the conduction band of the other semiconductor. For example, for one polarity of the applied voltage, given a sufficient potential energy difference between the two semiconductors, electrons can tunnel from the valence band of GaN into the Si conduction band. This process results in the creation of holes in GaN, which can recombine with conduction band electrons generating GaN band-to-band luminescence. A similar process applies under the opposite polarity for Si light emission. This device structure affords an additional experimental handle to the study of electroluminescence in single nanowires and, furthermore, could be used as a novel approach to two-colour light-emitting devices.Comment: 9 pages, 11 figure
    corecore