2 research outputs found

    Electroporation-based proteome sampling ex vivo enables the detection of brain melanoma protein signatures in a location proximate to visible tumor margins.

    No full text
    A major concern in tissue biopsies with a needle is missing the most lethal clone of a tumor, leading to a false negative result. This concern is well justified, since needle-based biopsies gather tissue information limited to needle size. In this work, we show that molecular harvesting with electroporation, e-biopsy, could increase the sampled tissue volume in comparison to tissue sampling by a needle alone. Suggested by numerical models of electric fields distribution, the increased sampled volume is achieved by electroporation-driven permeabilization of cellular membranes in the tissue around the sampling needle. We show that proteomic profiles, sampled by e-biopsy from the brain tissue, ex vivo, at 0.5mm distance outside the visible margins of mice brain melanoma metastasis, have protein patterns similar to melanoma tumor center and different from the healthy brain tissue. In addition, we show that e-biopsy probed proteome signature differentiates between melanoma tumor center and healthy brain in mice. This study suggests that e-biopsy could provide a novel tool for a minimally invasive sampling of molecules in tissue in larger volumes than achieved with traditional needle biopsies

    Exploring multisite heterogeneity of human basal cell carcinoma proteome and transcriptome.

    No full text
    Basal cell carcinoma (BCC) is the most common type of skin cancer. Due to multiple, potential underlying molecular tumor aberrations, clinical treatment protocols are not well-defined. This study presents multisite molecular heterogeneity profiles of human BCC based on RNA and proteome profiling. Three areas from lesions excised from 9 patients were analyzed. The focus was gene expression profiles based on proteome and RNA measurements of intra-tumor heterogeneity from the same patient and inter-tumor heterogeneity in nodular, infiltrative, and superficial BCC tumor subtypes from different patients. We observed significant overlap in intra- and inter-tumor variability of proteome and RNA expression profiles, showing significant multisite heterogeneity of protein expression in the BCC tumors. Inter-subtype analysis has also identified unique proteins for each BCC subtype. This profiling leads to a deeper understanding of BCC molecular heterogeneity and potentially contributes to developing new sampling tools for personalized diagnostics therapeutic approaches to BCC
    corecore