7 research outputs found

    Complexity Effective Sequential Detection of Secondary Synchronization Signal for 5G New Radio Communication Systems

    No full text

    Implementation of Sensing and Actuation Capabilities for IoT Devices Using oneM2M Platforms

    No full text
    In this paper, we present an implementation work of sensing and actuation capabilities for IoT devices using the oneM2M standard-based platforms. We mainly focus on the heterogeneity of the hardware interfaces employed in IoT devices. For IoT devices (i.e., Internet-connected embedded systems) to perform sensing and actuation capabilities in a standardized manner, a well-designed middleware solution will be a crucial part of IoT platform. Accordingly, we propose an oneM2M standard-based IoT platform (called nCube) incorporated with a set of tiny middleware programs (called TAS) responsible for translating sensing values and actuation commands into oneM2M-defined resources accessible in Web-based applications. All the source codes for the oneM2M middleware platform and smartphone application are available for free in the GitHub repositories. The full details on the implementation work and open-source contributions are described

    TTEO (Things Talk to Each Other): Programming Smart Spaces Based on IoT Systems

    No full text
    The Internet of Things allows things in the world to be connected to each other and enables them to automate daily tasks without human intervention, eventually building smart spaces. This article demonstrates a prototype service based on the Internet of Things, TTEO (Things Talk to Each Other). We present the full details on the system architecture and the software platforms for IoT servers and devices, called Mobius and &Cube, respectively, complying with the globally-applicable IoT standards, oneM2M, a unique identification scheme for a huge number of IoT devices, and service scenarios with an intuitive smartphone app. We hope that our approach will help developers and lead users for IoT devices and application services to establish an emerging IoT ecosystem, just like the ecosystem for smartphones and mobile applications

    From WSN towards WoT: Open API Scheme Based on oneM2M Platforms

    No full text
    Conventional computing systems have been able to be integrated into daily objects and connected to each other due to advances in computing and network technologies, such as wireless sensor networks (WSNs), forming a global network infrastructure, called the Internet of Things (IoT). To support the interconnection and interoperability between heterogeneous IoT systems, the availability of standardized, open application programming interfaces (APIs) is one of the key features of common software platforms for IoT devices, gateways, and servers. In this paper, we present a standardized way of extending previously-existing WSNs towards IoT systems, building the world of the Web of Things (WoT). Based on the oneM2M software platforms developed in the previous project, we introduce a well-designed open API scheme and device-specific thing adaptation software (TAS) enabling WSN elements, such as a wireless sensor node, to be accessed in a standardized way on a global scale. Three pilot services are implemented (i.e., a WiFi-enabled smart flowerpot, voice-based control for ZigBee-connected home appliances, and WiFi-connected AR.Drone control) to demonstrate the practical usability of the open API scheme and TAS modules. Full details on the method of integrating WSN elements into three example systems are described at the programming code level, which is expected to help future researchers in integrating their WSN systems in IoT platforms, such as oneM2M. We hope that the flexibly-deployable, easily-reusable common open API scheme and TAS-based integration method working with the oneM2M platforms will help the conventional WSNs in diverse industries evolve into the emerging WoT solutions

    Building IoT Services for Aging in Place Using Standard-Based IoT Platforms and Heterogeneous IoT Products

    No full text
    An aging population and human longevity is a global trend. Many developed countries are struggling with the yearly increasing healthcare cost that dominantly affects their economy. At the same time, people living with old adults suffering from a progressive brain disorder such as Alzheimer’s disease are enduring even more stress and depression than those patients while caring for them. Accordingly, seniors’ ability to live independently and comfortably in their current home for as long as possible has been crucial to reduce the societal cost for caregiving and thus give family members peace of mind, called ‘aging in place’ (AIP). In this paper we present a way of building AIP services using standard-based IoT platforms and heterogeneous IoT products. An AIP service platform is designed and created by combining previous standard-based IoT platforms in a collaborative way. A service composition tool is also created that allows people to create AIP services in an efficient way. To show practical usability of our proposed system, we choose a service scenario for medication compliance and implement a prototype service which could give old adults medication reminder appropriately at the right time (i.e., when it is time to need to take pills) through light and speaker at home but also wrist band and smartphone even outside the home
    corecore