207 research outputs found

    GTRACE-RS: Efficient Graph Sequence Mining using Reverse Search

    Full text link
    The mining of frequent subgraphs from labeled graph data has been studied extensively. Furthermore, much attention has recently been paid to frequent pattern mining from graph sequences. A method, called GTRACE, has been proposed to mine frequent patterns from graph sequences under the assumption that changes in graphs are gradual. Although GTRACE mines the frequent patterns efficiently, it still needs substantial computation time to mine the patterns from graph sequences containing large graphs and long sequences. In this paper, we propose a new version of GTRACE that enables efficient mining of frequent patterns based on the principle of a reverse search. The underlying concept of the reverse search is a general scheme for designing efficient algorithms for hard enumeration problems. Our performance study shows that the proposed method is efficient and scalable for mining both long and large graph sequence patterns and is several orders of magnitude faster than the original GTRACE

    Efficient decoherence-free entanglement distribution over lossy quantum channels

    Full text link
    We propose and demonstrate a scheme for boosting up the efficiency of entanglement distribution based on a decoherence-free subspace (DFS) over lossy quantum channels. By using backward propagation of a coherent light, our scheme achieves an entanglement-sharing rate that is proportional to the transmittance T of the quantum channel in spite of encoding qubits in multipartite systems for the DFS. We experimentally show that highly entangled states, which can violate the Clauser-Horne-Shimony-Holt inequality, are distributed at a rate proportional to T.Comment: 5pages, 5figure
    • …
    corecore