64 research outputs found

    ホウシャセン デ ナオル ビョウキ

    Get PDF
    Rapid advances in radiation therapy technology have made remotely controlled after loading system, 3 dimensional planning system and intensity modulated radiation therapy system. These technologies have made it possible to deliver ideally distributed radiation to the target three dimensionally with great accuracy, while sparing the adjacent organs. As a result, radiation therapy becomes a treatment method equal to a surgery in local control probability of cancer in various organs. If the cure rate is the same, treatment method with a few functional deficit and adverse effect by a treatment is regarded as a better. Radiation therapy must be always explained to a patient as alternative therapy of a surgery in early cancer of the organ that function preservation is important

    Radiation therapy: state of the art and the future

    Get PDF
    Technical innovation in radiation therapy (RT) such as stereotactic irradiation, intensity modulated RT, image-guided RT, and brachytherapy using remote controlled after-loading system have made it possible to deliver ideally distributed radiation dose to the target with great accuracy, while sparing the adjacent organs at risk. As a result, tumor control rate by RT improved markedly and became excellent alternative to surgery for asymptomatic or mildly symptomatic brain tumors, early stage lung cancer, and low-risk prostate cancer. In locally advanced stage of cancer, randomized controlled trials established the chemoradiation therapy as a standard treatment option for patients with head and neck cancer, lung cancer, esophageal cancer, and cervical cancer. RT is also a valuable treatment for palliation of local symptoms caused by cancer with consistently high response rates. Minimally invasive therapy has come to be emphasized its needs in the background of increased tendency of elderly patients with cancer, and advances in conformal dose delivery technique raise the RT at a more important position in cancer therapy. However, adequate number of RT profession is indispensable to utilize highly-sophisticated RT technology. Substantiality of an education system for radiation oncologist, RT technologist, and medical physicists is our current most important issue

    サイシン イリョウ ニオケル ホウシャセン チリョウ ノ ヤクワリ

    Get PDF
    New technologies of radiation therapy such as image-guided radiation therapy, stereotactic irradiation, and brachytherapy using remotely controlled after-loading system have made it possible to deliver ideally distributed radiation dose to the target with great accuracy, while sparing the adjacent organs. As a result, tumor control rate by radiation therapy improved markedly and became excellent alternative to surgery for asymptomatic or mildly symptomatic brain tumors, early stage lung cancer, and low-risk prostate cancer. In locally advanced stage of cancer, randomized controlled trials established the chemoradiation therapy as a standard treatment option for patients with head and neck cancer, lung cancer, esophageal cancer, and cervical cancer. Radiation therapy is also a valuable treatment for palliation of local symptoms caused by cancer with consistently high response rates

    ホウシャセン チリョウ : state of the art and in future

    Get PDF
    Technical innovation in radiation therapy such as stereotactic irradiation, intensity modulated radiation therapy, image-guided radiation therapy, and brachytherapy using remote controlled after-loading system have made it possible to deliver ideally distributed radiation dose to the target with great accuracy, while sparing the adjacent organs at risk. As a result, tumor control rate by radiation therapy improved markedly and became excellent alternative to surgery for asymptomatic or mildly symptomatic brain tumors, early stage lung cancer, and low-risk prostate cancer. In locally advanced stage of cancer, randomized controlled trials put the chemoradiation therapy forward a standard treatment option for patients with head and neck cancer, lung cancer, esophageal cancer, and uterine cervical cancer. Radiation therapy is also a effective treatment method for palliation of local symptoms caused by cancer with consistently high response rates. Minimmaly invasive therapy has come to be emphasized its needs against the background of increased tendency of elderly patients with cancer, and advances in conformal dose delivery technique raise the radiation therapy at a more important position in the medical care for cancer. However, adequate number of radiation therapy profession is indispensable to manage highlysophisticated radiation therapy technology. It is our current issue to establish the education system bringing up radiation therapy professions including a radiation oncologist, a medical physicist, a dosimetrist, and a radiation therapy technologist

    Differences in image density adjustment parameters on the image matching accuracy of a floor-mounted kV X-ray image-guided radiation therapy system

    Get PDF
    This study aimed to investigate the effect of two different image density adjustment parameters on the results of image matching at six degrees of freedom using radiographic images generated by the ExacTrac X-ray system in brain stereotactic radiosurgery (SRS). This study comprised 32 patients who underwent brain SRS at our hospital from January 2020 to December 2020. In this study, (1) the default parameter (an image density parameter between “tissue” and “bone”) was an image density parameter for digitally reconstructed radiograph (DRR) generation used at many facilities, and (2) the bone parameter was the steepest contrast parameter used at our hospital. Of the 32 patients, 24 (75%) had a couch angle of 0.5 mm or more in the translational direction or 0.5° or more in the rotational direction, and 10 (31%) had a couch angle of 1.0 mm or more in the translational direction or 1.0° or more in the rotational direction. Among the 131 cases of all couch angles, 46 (35%) cases had a translational direction of 0.5 mm or more or a rotational direction of 0.5° or more, and 15 (11%) had a translational direction of 1.0 mm or more or a rotational direction of 1.0° or more. The results of this study indicate the usefulness of using appropriate DRR parameters for each case, rather than using the default settings. The use of appropriate DRR parameters can lead to accurate position matching results, leading to fewer image-guided radiation therapy shots and a lower imaging dose

    Predicting Therapeutic Effects using PET/CT

    Get PDF
    This study investigated the usefulness of [18F]-3’-deoxy-3’-fluorothymidine (18F-FLT) and [18F]-fluoro-2-deoxy-D-glucose (18F-FDG) positron emission tomography (PET)/computed tomography (CT) imaging for predicting the therapeutic efficacy of non-small cell lung cancer (NSCLC) irradiation at an early stage after radiation treatment. Mice were xenografted with the human lung adenocarcinoma line A549 or large cell lung cancer line FT821. Tumour uptake of 18F-FLT and 18F-FDG was imaged using PET/CT before and 1 week after irradiation. In A549 tumours, 18F-FLT uptake was significantly decreased, and 18F-FDG uptake was unchanged post-irradiation compared with pre-irradiation. In FT821 tumours, uptake of both 18F-FLT and 18F-FDG uptake was substantially decreased post-irradiation compared with pre-irradiation. In both xenografts, tumour volumes in the irradiated groups were significantly decreased compared with those in the control group. 18F-FLT is expected to contribute to individual NSCLC therapy because it accurately evaluates the decrease in tumour activity that cannot be captured by 18F-FDG. 18F-FDG may be useful for evaluating surviving cells without being affected by the inflammatory reaction at an extremely early stage, approximately 1 week after irradiation. Combined use of 18F-FLT and 18F-FDG PET/CT imaging may increase the accurate prediction of radiotherapy efficacy, which may lead to improved patient outcomes and minimally invasive personalised therapy

    Effectiveness of Newly Developed Water-Equivalent Mouthpiece during External Beam Radiotherapy for Oral Cancer

    Get PDF
    The objective of this study was to research the effectiveness of newly developed water-equivalent mouthpiece during external beam radiotherapy for oral cancer. In external beam radiotherapy for cancer of the tongue, floor of the mouth, and lower gingiva, it is possible to prescribe a low dose to the upper gingiva and hard palate at an open mouth position using a mouthpiece. However, the inhomogeneity correction resulting from the air cavity and the mobility of the tongue produced by an open mouth position should be considered. Therefore, a new mouthpiece was designed to be fixed by the dental arch, and the air cavity of the mouth can be filled with water-equivalent material. In 30 patients with previously treated oral cancer, the simulated homogeneity index of the calculated water-equivalent mouthpiece by a treatment-planning system was significantly better than that of a conventional mouthpiece (p = 0.004). This new mouthpiece facilitates excellent dose distribution while attaining immobilization of the tongue in patients with oral cancer

    ICBT survey for cervical cancer

    Get PDF
    To review the current status of, and labor expended for (in terms of time required), intracavitary brachytherapy (ICBT) in definitive radiotherapy/chemoradiotherapy for cervical cancer patients, two national surveys were performed. The first survey was conducted between July and August 2016 and consisted of a questionnaire of 12 items regarding ICBT procedures for cervical cancer, which was sent to 173 centers installed with high-dose-rate remote after-loading brachytherapy systems. Between November and December 2016, another survey was performed in 79 centers to evaluate labor required for ICBT procedures in terms of time spent and number of staff involved. In the first survey, the response rate was 77% of the 173 centers. ICBT was performed for cervical cancer in 118 (89%) centers. Imaging modalities used after applicator insertion were X-ray alone in 46 (40%), computed tomography in 69 (60%) and magnetic resonance imaging in 5 (4%) centers. Three-dimensional (3D) planning was performed in 55 centers (48%). Fifty-five (70%) centers responded to the second survey regarding ICBT-mandated labor. The median cumulative duration of the entire ICBT procedure was 330 min (the sum of the times spent by each staff member) and was longer in the 3D image–guided brachytherapy (3D-IGBT) (405 min) than in the X-ray group (230 min). This trend was significant for the specific processes of image acquisition and treatment planning, especially for radiation oncologists. In definitive radiotherapy/chemoradiotherapy for cervical cancer patients, 3D-IGBT use has been gradually spreading in Japan. The present survey revealed that ICBT, especially 3D-IGBT, requires substantial labor and time from staff
    corecore