4 research outputs found

    Screening of Rhizobacterial Isolates from Apple Rhizosphere for Their Biocontrol and Plant Growth Promotion Activity

    No full text
    Apple crops are prone to several diseases that limit their production—in particular, root rot caused by a new genus of oomycetes, mainly Phytopythium vexans. This study aims to screen antagonistic bacteria that can play an important role in the biological control of this pathogenic oomycete and to evaluate their capacity to promote plant growth. The dual culture test revealed that, out of 200 bacterial isolates, 16 have been able to inhibit the mycelial growth of P. vexans with inhibition rates greater than 50%. The selected isolates were identified based on the 16S rDNA genes: 14 bacteria belonging to the genus Bacillus, Stenotrophomonas, and the family Enterobacteriaceae. Notably, two isolates, B1 and M2-6 (identified as Bacillus velezensis), demonstrated the highest inhibition rates of 70% and 68%, respectively. These selected isolates were examined for their ability to produce different compounds related to biocontrol and plant growth promotion. Furthermore, the 16 selected isolates were evaluated for their ability to produce compounds associated with biocontrol and plant growth promotion, including hydrolytic enzymes (cellulases, proteases, and amylases), HCN (hydrogen cyanide) production, phosphate solubilization, IAA (indole-3-acetic acid) production, pectinase production, and stimulation of sorghum bicolor growth in vivo. Variations were observed among the bacterial isolates in terms of their compound production and phytostimulation capabilities. However, the secretion of proteases was consistently detected in all antagonistic isolates. The presence of genes responsible for the production of antifungal lipopeptides (bacillomycin, fengycin, and iturin) in the selected bacterial isolates was determined using polymerase chain reaction (PCR) techniques, while the absence of genes involved in surfactin biosynthesis was also confirmed through PCR studies. These isolates demonstrated inhibitory activity through the production of proteases and antifungal lipopeptides. Further research is needed to explore their potential use in biological control strategies and to improve apple crop productivity

    Potential for Biological Control of <i>Pythium schmitthenneri</i> Root Rot Disease of Olive Trees (<i>Olea europaea</i> L.) by Antagonistic Bacteria

    No full text
    Several diseases affect the productivity of olive trees, including root rot disease caused by Pythium genera. Chemical fungicides, which are often used to manage this disease, have harmful side effects on humans as well as environmental components. Biological management is a promising control approach that has shown its great potential as an efficient eco-friendly alternative to treating root rot diseases. In the present study, the antagonistic activity of ten bacterial isolates was tested both in vitro and in planta against Pythium schmitthenneri, the causal agent of olive root rot disease. These bacterial isolates belonging to the genera Alcaligenes, Pantoea, Bacillus, Sphingobacterium, and Stenotrophomonas were chosen for their potential antimicrobial effects against many pathogens. Results of the in vitro confrontation bioassay revealed a high reduction of mycelial growth exceeding 80%. The antifungal effect of the volatile organic compounds (VOCs) was observed for all the isolates, with mycelial inhibition rates ranging from 28.37 to 70.32%. Likewise, the bacterial cell-free filtrates showed important inhibition of the mycelial growth of the pathogen. Overall, their efficacy was substantially affected by the nature of the bacterial strains and their modes of action. A greenhouse test was then carried out to validate the in vitro results. Interestingly, two bacterial isolates, Alcaligenes faecalis ACBC1 and Bacillus amyloliquefaciens SF14, were the most successful in managing the disease. Our findings suggested that these two antagonistic bacterial isolates have promising potential as biocontrol agents of olive root rot disease

    Combination of Sodium Bicarbonate (SBC) with Bacterial Antagonists for the Control of Brown Rot Disease of Fruit

    No full text
    Simultaneous treatment with antagonistic bacteria Bacillus amylolquefaciens (SF14), Alcaligenes faecalis (ACBC1), and the food additive sodium bicarbonate (SBC) to control post-harvest brown rot disease caused by Monilinia fructigena, and their effect on the post-harvest quality of nectarines were evaluated. Four concentrations of SBC (0.5, 2, 3.5, and 5%) were tested. Results showed that bacterial antagonists displayed remarkable compatibility with different concentrations of SBC and that their viability was not affected. The results obtained in vitro and in vivo bioassays showed a strong inhibitory effect of all treatments. The combination of each bacterial antagonist with SBC revealed a significant improvement in their biocontrol efficacies. The inhibition rates of mycelial growth ranged from 60.97 to 100%. These results also indicated that bacterial antagonists (SF14 or ACBC1) used at 1 &times; 108 CFU/ mL in combination with 2, 3.5, or 5% SBC significantly improved the control of M. fructigina by inhibiting the germination of spores. Interestingly, disease incidence and lesion diameter in fruits treated with SF14, ACBC1 alone, or in combination with SBC were significantly lower than those in the untreated fruits. In vivo results showed a significant reduction in disease severity ranging from 9.27 to 64.83% compared to the untreated control, while maintaining the appearance, firmness, total soluble solids (TSS), and titratable acidity (TA) of fruits. These results suggested that the improved disease control by the two antagonistic bacteria was more likely due to the additional inhibitory effects of SBC on the mycelial growth and spore germination of the pathogenic fungus. Overall, the combination of both bacteria with SBC provided better control of brown rot disease. Therefore, a mixture of different management strategies can effectively control brown rot decay on fruits

    Beneficial Microorganisms as Bioprotectants against Foliar Diseases of Cereals: A Review

    No full text
    Cereal production plays a major role in both animal and human diets throughout the world. However, cereal crops are vulnerable to attacks by fungal pathogens on the foliage, disrupting their biological cycle and photosynthesis, which can reduce yields by 15–20% or even 60%. Consumers are concerned about the excessive use of synthetic pesticides given their harmful effects on human health and the environment. As a result, the search for alternative solutions to protect crops has attracted the interest of scientists around the world. Among these solutions, biological control using beneficial microorganisms has taken on considerable importance, and several biological control agents (BCAs) have been studied, including species belonging to the genera Bacillus, Pseudomonas, Streptomyces, Trichoderma, Cladosporium, and Epicoccum, most of which include plants of growth-promoting rhizobacteria (PGPRs). Bacillus has proved to be a broad-spectrum agent against these leaf cereal diseases. Interaction between plant and beneficial agents occurs as direct mycoparasitism or hyperparasitism by a mixed pathway via the secretion of lytic enzymes, growth enzymes, and antibiotics, or by an indirect interaction involving competition for nutrients or space and the induction of host resistance (systemic acquired resistance (SAR) or induced systemic resistance (ISR) pathway). We mainly demonstrate the role of BCAs in the defense against fungal diseases of cereal leaves. To enhance a solution-based crop protection approach, it is also important to understand the mechanism of action of BCAs/molecules/plants. Research in the field of preventing cereal diseases is still ongoing
    corecore