26 research outputs found

    Anaerobic co-digestion of dairy cow manure and high concentrated food processing waste

    No full text
    Anaerobic co-digestion of dairy manure (DM) and concentrated food processing wastes (FPW) under thermophilic (55 A degrees C) and mesophilic (35 A degrees C) temperatures, and fertilizer value of the effluent were investigated in this study. Two types of influent feedstock were utilized: 100 % DM and a 7:3 mixture (wet weight basis) of DM and FPW. The contents of the FPW, as feedstock were 3:3:3:1 mixture of cheese whey, animal blood, used cooking oil and residue of fried potato. Four continuous digestion experiments were carried out in 10 L digesters. Co-digestion under thermophilic temperature increased methane production per digester volume. However, co-digestion at 35 A degrees C was inhibited. Total Kjeldahl nitrogen (N) recovered after digestion ranged from 73.1 to 91.9 %, while recoveries of ammonium nitrogen (NH4-N) exceeded 100 %. The high recovery of NH4-N was attributed to mineralization of influent organic N. The mixture of DM and FPW showed greater recoveries of NH4-N after digestion compared to DM only, reflecting its greater organic N degradability. The ratios of extractable to total calcium, phosphorus and magnesium were slightly reduced after digestion. These results indicate that co-digestion of DM and FPW under thermophilic temperature enhances methane production and offers additional benefit of organic fertilizer creation

    Optimizing biodiesel production from waste with computational chemistry, machine learning and policy insights: a review

    No full text
    The excessive reliance on fossil fuels has resulted in an energy crisis, environmental pollution, and health problems, calling for alternative fuels such as biodiesel. Here, we review computational chemistry and machine learning for optimizing biodiesel production from waste. This article presents computational and machine learning techniques, biodiesel characteristics, transesterification, waste materials, and policies encouraging biodiesel production from waste. Computational techniques are applied to catalyst design and deactivation, reaction and reactor optimization, stability assessment, waste feedstock analysis, process scale-up, reaction mechanims, and molecular dynamics simulation. Waste feedstock comprise cooking oil, animal fat, vegetable oil, algae, fish waste, municipal solid waste and sewage sludge. Waste cooking oil represents about 10% of global biodiesel production, and restaurants alone produce over 1,000,000 m3 of waste vegetable oil annual. Microalgae produces 250 times more oil per acre than soybeans and 7–31 times more oil than palm oil. Transesterification of food waste lipids can produce biodiesel with a 100% yield. Sewage sludge represents a significant biomass waste that can contribute to renewable energy production.<br/
    corecore