2 research outputs found

    Localization of Liv2 as an Immature Hepatocyte Marker in EB Outgrowth

    Get PDF
    The objective of this study was to establish Liv2, a surface marker of mouse immature hepatocytes (hepatoblasts), as a selection tool for embryonic stem (ES) cell–derived immature hepatocytes by acquiring basic data on Liv2 in normal mouse embryos and by confirming Liv2 expression in mouse ES-derived cells. The estimated molecular weight of Liv2 was 4045 kDa, and immunoreactivity was definitively detected in the cell membrane of fetal hepatocytes on embryonic day (E) 9.5, declined gradually until E12.5, and subsequently became undetectable. Liv2 was localized on and close to the cell membrane. Embryoid bodies (EB) were formed from mouse ES cells whose undifferentiated state was confirmed with immunostaining of Nanog by the hanging drop method. A few Liv2-positive cells occurred as a cluster in EB outgrowth on day 7, but only some of these were albumin (ALB)-positive on day 13. These cells had the same pattern of immunoreactivity, i.e., localization on the cell membrane, as immature hepatocytes in the developing liver, although there were other types of cells with a different pattern of immunoreactivity that were seen only as a granular pattern in the cytoplasm and without ALB or the neuronal marker nestin. These results suggest that Liv2 may be useful as a surface marker for immature hepatocytes derived from ES cells. This application would allow for the sole selection of immature hepatocytes and provide a useful tool for regenerative medicine

    Skin Wound Healing of the Adult Newt, Cynops pyrrhogaster: A Unique Re-Epithelialization and Scarless Model

    No full text
    In surgical and cosmetic studies, scarless regeneration is an ideal method to heal skin wounds. To study the technologies that enable scarless skin wound healing in medicine, animal models are useful. However, four-limbed vertebrates, including humans, generally lose their competency of scarless regeneration as they transit to their terrestrial life-stages through metamorphosis, hatching or birth. Therefore, animals that serve as a model for postnatal humans must be an exception to this rule, such as the newt. Here, we evaluated the adult newt in detail for the first time. Using a Japanese fire-bellied newt, Cynops pyrrhogaster, we excised the full-thickness skin at various locations on the body, and surveyed their re-epithelialization, granulation or dermal fibrosis, and recovery of texture and appendages as well as color (hue, tone and pattern) for more than two years. We found that the skin of adult newts eventually regenerated exceptionally well through unique processes of re-epithelialization and the absence of fibrotic scar formation, except for the dorsal-lateral to ventral skin whose unique color patterns never recovered. Color pattern is species-specific. Consequently, the adult C. pyrrhogaster provides an ideal model system for studies aimed at perfect skin wound healing and regeneration in postnatal humans
    corecore