19 research outputs found

    Tricellulin constitutes a novel barrier at tricellular contacts of epithelial cells

    Get PDF
    For epithelia to function as barriers, the intercellular space must be sealed. Sealing two adjacent cells at bicellular tight junctions (bTJs) is well described with the discovery of the claudins. Yet, there are still barrier weak points at tricellular contacts, where three cells join together. In this study, we identify tricellulin, the first integral membrane protein that is concentrated at the vertically oriented TJ strands of tricellular contacts. When tricellulin expression was suppressed with RNA interference, the epithelial barrier was compromised, and tricellular contacts and bTJs were disorganized. These findings indicate the critical function of tricellulin for formation of the epithelial barrier

    Backward multiplex coherent anti-Stokes Raman (CARS) spectroscopic imaging with electron-multiplying CCD (EM-CCD) camera

    Get PDF
    A multiplex CARS imaging system, equipped with an EM-CCD camera, was developed to improve the sensitivity of backward CARS imaging in biological analysis using an inverted microscope. The signal-to-noise ratio was improved by a factor of ca. 3 compared to a conventional CCD mode through the use of EM gain. When imaging epithelial cells in the backward CARS configuration, intracellular organelles such as lipid droplets and nuclei were spectroscopically identified with an exposure time of only 100 ms/pixel.</p

    Defining the Roles of β-Catenin and Plakoglobin in LEF/T-Cell Factor-Dependent Transcription Using β-Catenin/Plakoglobin-Null F9 Cells▿

    No full text
    β-Catenin functions as a transcriptional regulator in Wnt signaling. Its function is regulated by a specific destruction system. Plakoglobin is a close homologue of β-catenin in mammalian cells and is regulated in a similar fashion. When β-catenin or plakoglobin is exogenously expressed in cells, endogenous β-catenin is stabilized, which complicates estimation of the transcriptional activities of exogenously expressed proteins. To facilitate the design of experiments aimed at investigating the transcriptional activities of β-catenin and plakoglobin, we utilized F9 cells in which we knocked out endogenous β-catenin and/or plakoglobin by gene deletion and exogenously expressed wild-type and mutant β-catenin and/or plakoglobin. We show that C-terminally deleted β-catenin, but not plakoglobin, has a strong dominant-negative effect on transcription without altering the nuclear accumulation of β-catenin. Moreover, we show that Wnt-3a activation of LEF/T-cell factor (TCF)-dependent transcription depends on β-catenin but not on plakoglobin. Using chimeras of β-catenin and plakoglobin, we demonstrate that plakoglobin has the potential to function in transcriptional regulation but is not responsible for Wnt-3a signaling in F9 cells. Our data show that preferential nuclear accumulation of β-catenin is not necessarily linked to its transcriptional activity. We also clearly demonstrate that plakoglobin is insufficient for LEF/TCF-dependent transcriptional activation by Wnt-3a in F9 cells
    corecore