8 research outputs found

    Direct assessment by electron spin resonance spectroscopy of the antioxidant effects of French maritime pine bark extract in the maxillofacial region of hairless mice

    Get PDF
    Flavangenol, one of extract of French maritime pine bark, is a complex mixture of bioflavonoids with oligometric proanthocyanidins as the major constituents. These constituents, catechin and procyanidin B1, are water-soluble derivatives of flavangenol. In this study, we investigated the antioxidant effects of flavangenol on reactive oxygen species such as hydroxyl radical, superoxide anion and singlet oxygen using electron spin resonance and spin trapping. The effect of flavangenol on oxidative stress in the skin from the maxillofacial region of hairless mice was investigated using an in vivo L-band electron spin resonance imaging system. Flavangenol attenuated oxidative stress in the maxillofacial skin by acting as a reactive oxygen species scavenger, as demonstrated by in vitro and in vivo electron spin resonance imaging analysis. The absorption and metabolism of flavangenol were also examined. After oral administration of flavangenol in human and rat, most of the catechin in plasma was in the conjugated form, while 45% to 78% of procyanidin B1 was unconjugated, indicating that non-conjugated procyanidin B1 would be active in the circulation. The ability of flavangenol to reduce reactive oxygen species levels in the circulation of the maxillofacial region suggests that this extract may be beneficial for skin protection from exposure to ultraviolet irradiation

    The Crude Extract from Puerariae Flower Exerts Antiobesity and Antifatty Liver Effects in High-Fat Diet-Induced Obese Mice

    Get PDF
    Kudzu, a leguminous plant, has long been used in folk medicine. In particular, its flowers are used in Japanese and Chinese folk medicine for treating hangovers. We focused on the flower of Kudzu (Puerariae thomsonii), and we previously reported the antiobesity effect of Puerariae thomsonii flower extract (PFE) in humans. In this study, we conducted an animal study to investigate the effect of PFE on visceral fat and hepatic lipid levels in mice with diet-induced obesity. In addition, we focused on gene expression profiles to investigate the antiobesity mechanism of PFE. Male C57BL/6J mice were fed a high-fat diet (HFD) or an HFD supplemented with 5% PFE for 14 days. PFE supplementation significantly reduced body weight and white adipose tissue (WAT) weight. Moreover, in the histological analysis, PFE supplementation improved fatty liver. Hepatic reverse transcription-polymerase chain reaction revealed that PFE supplementation downregulated acetyl-CoA carboxylase expression. For adipose tissue, the expressions of hormone-sensitive lipase in WAT and uncoupling protein 1 in brown adipose tissue (BAT) were significantly upregulated. These results suggest that PFE exerts antiobesity and antifatty liver effects in high-fat diet-induced obese mice through suppressing lipogenesis in the liver, stimulating lipolysis in WAT, and promoting thermogenesis in BAT

    Sweet potato (Ipomoea batatas L.) leaves suppressed oxidation of low density lipoprotein (LDL) in vitro and in human subjects

    Get PDF
    Sweet potato (Ipomoea batatas L.) leaves are consumed as vegetables around the world, especially in Southeast Asia. The aim of this study was to investigate the inhibitory effect of sweet potato leaves on low-density lipoprotein oxidation in vitro and in human subjects. We compared the antioxidant activity of 8 kinds of sweet potato leaves. Every sweet potato leaf had high radical scavenging activity and prolonged a lag time for starting low-density lipoprotein oxidation in vitro. We found that sweet potato leaves contained abundant polyphenol compounds and the radical scavenging activity and prolongation rate of lag time were highly correlated with total polyphenol content. We also confirmed that thiobarbituric acid reactive substances production was increased in endothelial cell-mediated low-density lipoprotein oxidation, which was decreased by treatment with sweet potato leaves. We further measured the low-density lipoprotein oxidizability in 13 healthy volunteers after their intake of 18 g of “Suioh”, raw sweet potato leaves. “Suioh” prolonged a lag time for starting low-density lipoprotein oxidation and decreased low-density lipoprotein mobility. These results suggest that sweet potato leaves have antioxidant activity leading to the suppression of low-density lipoprotein oxidation

    Consumption of Pueraria

    No full text

    Insoluble Fiber in Young Barley Leaf Suppresses the Increment of Postprandial Blood Glucose Level by Increasing the Digesta Viscosity

    Get PDF
    Barley (Hordeum vulgare L.) is a well-known cereal plant. Young barley leaf is consumed as a popular green-colored drink, which is named “Aojiru” in Japan. We examined the effects of barley leaf powder (BLP) and insoluble fibers derived from BLP on postprandial blood glucose in rats and healthy Japanese volunteers. BLP and insoluble fibers derived from BLP suppressed the increment of postprandial blood glucose levels in rats (), and increased the viscosity of their digesta. The insoluble fibers present in BLP might play a role in controlling blood glucose level by increasing digesta viscosity. In human, BLP suppressed the increment of postprandial blood glucose level only in those which exhibited higher blood glucose levels after meals (). BLP might suppress the increment of postprandial blood glucose level by increasing digesta viscosity in both of rats and humans who require blood glucose monitoring
    corecore