8 research outputs found

    Effect of Fertilizer Level and Intercropping with Bambara Nut (\u3cem\u3eVigna subterranea\u3c/em\u3e) on the Growth and Herbage Yield of Maize

    Get PDF
    The low fertility status of most tropical soils has hindered maize production as maize has a strong exhausting effect on the soil. It has been generally observed that maize fails to produce good grain in plots without adequate nutrients (Adediran and Banjoko 2003). Legumes generally are able to fix nitrogen to the soil which the companion crop could benefit from, but usually the nitrogen fixed occurs in insufficient quantities for marginally nitrogen sensitive crops such as maize and hence the required use of fertilizers. Inorganic fertilizers exert strong influences on plant growth, development and yield (Stefano et al. 2004). The use of legumes in mixed cropping systems is one of the traditional soil-fertility maintenance strategies. Legume-cereal intercropping often increases the quantity and quality of residues, which could improve livestock production considerably in addition to benefits in soil fertility but may decrease the yield of the companion cereal crop (Nandi and Haque 1986). Although the beneficial effects of intercropping legumes have been demonstrated by intercropping cereals with a few legumes such as cowpea, lablab, soybean etc, the same cannot be said for all legumes. This study aims at investigating the effect of fertilizer levels and intercropping with bambara nut (Vigna subterranean L.Verdc) on the growth and yield of maize for use as forage

    Effect of Plant Spacing on the Growth and Yield of Forage Plant, Maize, Intercropped with Cowpea (\u3cem\u3eVigna unguiculata\u3c/em\u3e sub spp. \u3cem\u3esesquipedalis\u3c/em\u3e)

    Get PDF
    Feed constraint is the most important impediment to improved livestock production in the Sub-Saharan African (SSA) countries (Agyemang 2003), as a result of seasonal shortages in the quantity and quality of forage from natural pastures that supply most of the feed for animals due to the prolonged annual dry season. Appropriate technologies to improve the performance of the local animal breeds and feed resources under the traditional system are generally lacking. Maize forms a major part of the cereal crops consumed by man and the residues serve as a source of fodder for livestock (Asawalam and Adesiyan 2001). Demand for maize has led farmers to reduce planting spacing. When crops are grown sole, spacing and planting pattern differ from when intercropped. Maize is known to be a very heavy soil nutrient utiliser and usually produces low yield in situations of low soil fertility and poor agronomic practices. Intercropping maize with legumes has shown prospects for improving maize crop yield and this would result in a reduction in the use of high cost synthetic fertilizers. The cowpea is an example of such legume and little work has been done on plant spacing for this crop in an intercropping system with maize. Plant spacing is an important agronomic attribute as it has effects on light interception which is the energy manufacturing medium of green parts of the plant (Ibeawuchi, et al. 2008)

    Effects of Essential Oil Blends on In Vitro Apparent and Truly Degradable Dry Matter, Efficiency of Microbial Production, Total Short-Chain Fatty Acids and Greenhouse Gas Emissions of Two Dairy Cow Diets

    No full text
    The current study evaluated nine essential oil blends (EOBs) for their effects on ruminal in vitro dry matter digestibility (IVDMD), efficiency of microbial production, total short-chain fatty acid concentration (SCFA), total gas, and greenhouse gas (GHG) emissions using two dietary substrates (high forage and high concentrate). The study was arranged as a 2 × 2 × 9 + 1 factorial design to evaluate the effects of the nine EOBs on the two dietary substrates at two time points (6 and 24 h). The inclusion levels of the EOBs were 0 µL (control) and 100 µL with three laboratory replicates. Substrate × EOBs × time interactions were not significant (p > 0.05) for total gas and greenhouse gas emissions. The inclusion of EOBs in the diets resulted in a reduction (p p p p < 0.001) the total and molar proportion of volatile fatty acid concentrations. Overall, the inclusion of the EOBs modified the rumen function resulting in improved efficiency of microbial production. Both the apparent and truly degraded DM was reduced in the EOB treatments. The inclusion of EOBs also resulted in reduced GHG emissions in both diets, except for EOB8 in the high forage diet which was slightly higher than the control treatment

    Synergistic Effects of Essential Oil Blends and Fumaric Acid on Ruminal Fermentation, Volatile Fatty Acid Production and Greenhouse Gas Emissions Using the Rumen Simulation Technique (RUSITEC)

    No full text
    This study investigated the combined impact of essential oil blends (EOBs) and fumaric acid (FA) on ruminal fermentation in dairy cows using the rumen simulation technique (RUSITEC) system. Three rumen-cannulated, non-lactating Holstein Friesian cows served as inoculum donors. The substrate, a total mixed ration (TMR), comprised corn silage, alfalfa hay, and a concentrate mix in a 3:1:1 ratio. The four treatments evaluated were Control (TMR without additives), EFA1 (TMR + EOB1 + FA), EFA2 (TMR + EOB2 + FA), and EFA3 (TMR + EOB3 + FA). Sixteen fermentation chambers were randomly assigned to the treatments, each with four replicates, following a completely randomized design during a 9-day experimental period. EOBs and FA were added at 10 µL/g feed and 3% of TMR, respectively. After a 4-day adaptation, samples were collected for 5 days. Results revealed that EFA1 significantly reduced (p = 0.0351) CH4 emissions by 60.2% without negatively impacting dry matter disappearance, fiber fraction digestibility, pH, or gas volume. All EFAs increased (p 0.001) the propionate molar proportion and decreased (p 0.001) the acetate-to-propionate ratio. EFA2 decreased (p 0.05) the acetate proportion by 3.3% compared to the control. In conclusion, EFA1 is recommended as an effective nutritional intervention to mitigate CH4 emissions and optimize ruminal fermentation in dairy cows

    A Mixture of Prebiotics, Essential Oil Blends, and Onion Peel Did Not Affect Greenhouse Gas Emissions or Nutrient Degradability, but Altered Volatile Fatty Acids Production in Dairy Cows Using Rumen Simulation Technique (RUSITEC)

    No full text
    This study evaluated the synergistic effects of prebiotics containing galacto-oligosaccharides (GOS) and/or mannan oligosaccharides (MOS), essential oil blend (EOB), and onion peel (OPE) on fermentation characteristics using the rumen simulation technique (RUSITEC) system. Three rumen-cannulated, non-lactating Holstein Friesian cows were the inoculum donors. The substrate used for the study was a total mixed ration (TMR), which consisted of corn silage, alfalfa hay, and concentrate at 6:2:2, respectively. Sixteen fermentation vessels were randomly allotted to four treatments with four replicates each over a 9-day period in a completely randomized design. The treatments assessed include: control [TMR only], GEO [TMR + GOS + EOB + OPE], MEO [TMR + MOS + EOB + OPE], and OLEO [TMR + OLG + EOB + OPE]. OLG comprises GOS and MOS in equal proportion. EOB was included at 3 µL/g, while OPE, GOS, MOS, and OLG were added at 30 mg/g TMR. Results showed that pH, gas volume, effluent volume, and ammonia-N were not affected (p > 0.05) by the different additives. Similarly, greenhouse gas (GHG) emissions and nutrient digestibility were not affected by the treatments. Compared to the control, total volatile fatty acids (VFA) were decreased (p p = 0.011) by 3.3, 1.1, and 3.8% with GEO, MEO, and OLEO inclusion, respectively. MEO increased isobutyrate (p = 0.001) and branched chain VFA (p = 0.013) contents; however, GEO and OLEO inclusion reduced them. Overall, the interaction of EOB, OPE, GOS, and/or MOS did not affect nutrient digestibility or GHG emissions but reduced VFA production. Further research is recommended to assess the dose effect of the additives on GHG emissions and VFA production; and to determine the long-term effects of these interventions on the rumen microbiome and animal performance

    The Impact of Three White-Rot Fungi on Nutrient Availability, Greenhouse Gas Emissions, and Volatile Fatty Acid Production in Myceliated Sorghum

    No full text
    Our study employed Pleurotus ostreatus, P. djamor, and Trametes versicolor (white rot fungi = WRF) in the process of solid-state fermentation (SSF) to convert sorghum grains into myceliated sorghum (MS). The MS was then used for in vitro studies to assess changes in nutrient content compared to untreated sorghum (control). The results demonstrated a significant (p p P. djamor-treated MS at 24 h post-incubation. The treatment × time interaction was also significant (p T. versicolor MS exhibited the highest total volatile fatty acid (TVFA) and propionate production. The use of WRF in the SSF process led to a significant improvement in the nutritional value of sorghum. Despite the varying effects of different WRF on the nutritional parameters in MS, they show potential for enhancing the feed value of sorghum in animal feed

    <i>Pleurotus ostreatus</i> Can Significantly Improve the Nutritive Value of Lignocellulosic Crop Residues

    No full text
    Improvement in the nutritive value of corn stover after solid-state fermentation with Pleurotus ostreatus is reported. Two ruminally cannulated dairy cows were used in an in vitro study arranged in a 2 × 3 factorial design with four replicates using P. ostreatus-treated corn stover. The increase in crude protein (58.5%) and ash (25.8%) contents of the treated stover were significantly higher (p p p p p P. ostreatus improved the nutritive value of corn stover by increasing its energetic values, crude protein, microbial mass, and total volatile fatty acid concentrations
    corecore