28 research outputs found
Potential for health screening using long-term cardiovascular parameters measured by finger volume-oscillometry: Pilot comparative evaluation in regular and sleep-deprived activities
We explored the potential of health screening based on the long-term measurement of cardiovascular parameters using the finger volume-oscillometric technique. An automated instrument made simultaneous measurements of key cardiovascular parameters, including blood pressure, pulse pressure, heart rate, normalized pulse volume as an index of α-adrenalin-mediated sympathetic activity, and finger arterial elasticity. These were derived from finger photo-plethysmographic signals during application of cuff pressure. To assess the feasibility of achieving a screening function, measurements were made in ten healthy volunteers during 10 days of day-to-day living (normal condition), and carried out several times at a fixed time every day. During successive 10-day measurements, a 30-hour period of total sleep deprivation was introduced as a physiological challenge (abnormal condition). A linear discriminant analysis of the data was conducted to determine whether these two conditions could be discriminated. Periodic data collection was performed rapidly and easily, and the %-correct classifications of normal and abnormal conditions were 78.2% and 77.5%, respectively. This ability of the method to discriminate between regular and sleep-deprived activities demonstrates its potential for healthcare screening during day-to-day living. Further investigations using larger age and gender groups of subjects including patients with cardiovascular diseases under real-life situations are required. © 2013 IEEE
A fully automated health-care monitoring at home without attachment of any biological sensors and its clinical evaluation.
金沢大学理工研究域機械工学系Daily monitoring of health condition is important for an effective scheme for early diagnosis, treatment and prevention of lifestyle-related diseases such as adiposis, diabetes, cardiovascular diseases and other diseases. Commercially available devices for health care monitoring at home are cumbersome in terms of self-attachment of biological sensors and self-operation of the devices. From this viewpoint, we have been developing a non-conscious physiological monitor installed in a bath, a lavatory, and a bed for home health care and evaluated its measurement accuracy by simultaneous recordings of a biological sensors directly attached to the body surface. In order to investigate its applicability to health condition monitoring, we have further developed a new monitoring system which can automatically monitor and store the health condition data. In this study, by evaluation on 3 patients with cardiac infarct or sleep apnea syndrome, patients\u27 health condition such as body and excretion weight in the toilet and apnea and hypopnea during sleeping were successfully monitored, indicating that the system appears useful for monitoring the health condition during daily living
Research Activities in the Department of Medical Engineering
The Department of Medical Engineering is dedicated to the research and educational activities to fulfill its mission as educating medical professionals in medical engineering under the diploma policy and curriculum policy, that is, "research and education aiming for fostering professionals competent in comprehensive resolving capacity based upon a wide field of knowledge and vision in clinical engineering, which can be attained by wearing the basic knowledge of medical science and engineering." For this reason, the Faculty of the Department of Medical Engineering is composed of the two areas; PhDs in engineering-based clinical medicine, and mainly MDs in medical sciences and clinical medicine. To summarize the research activities at the Department of Medical Engineering, the authors will describe the overview of research activities being performed in the Department of Medical Engineering Fields, by dividing into 1) Research in Biomedical Engineering Fields, and 2) Research in Medical Science and Clinical Engineering Fields
First light demonstration of the integrated superconducting spectrometer
Ultra-wideband 3D imaging spectrometry in the millimeter-submillimeter
(mm-submm) band is an essential tool for uncovering the dust-enshrouded portion
of the cosmic history of star formation and galaxy evolution. However, it is
challenging to scale up conventional coherent heterodyne receivers or
free-space diffraction techniques to sufficient bandwidths (1 octave) and
numbers of spatial pixels (>). Here we present the design and first
astronomical spectra of an intrinsically scalable, integrated superconducting
spectrometer, which covers 332-377 GHz with a spectral resolution of . It combines the multiplexing advantage of microwave kinetic
inductance detectors (MKIDs) with planar superconducting filters for dispersing
the signal in a single, small superconducting integrated circuit. We
demonstrate the two key applications for an instrument of this type: as an
efficient redshift machine, and as a fast multi-line spectral mapper of
extended areas. The line detection sensitivity is in excellent agreement with
the instrument design and laboratory performance, reaching the atmospheric
foreground photon noise limit on sky. The design can be scaled to bandwidths in
excess of an octave, spectral resolution up to a few thousand and frequencies
up to 1.1 THz. The miniature chip footprint of a few
allows for compact multi-pixel spectral imagers, which would enable
spectroscopic direct imaging and large volume spectroscopic surveys that are
several orders of magnitude faster than what is currently possible.Comment: Published in Nature Astronomy. SharedIt Link to the full published
paper: https://rdcu.be/bM2F
非接触計測型IoTセンサモジュールを用いた日常場面でのストレス評価システムの開発
10570632藍野大学(34441)研究種目:基盤研究(C)(一般)研究期間:2017~202217K0159