1,429 research outputs found
k-anonymous Microdata Release via Post Randomisation Method
The problem of the release of anonymized microdata is an important topic in
the fields of statistical disclosure control (SDC) and privacy preserving data
publishing (PPDP), and yet it remains sufficiently unsolved. In these research
fields, k-anonymity has been widely studied as an anonymity notion for mainly
deterministic anonymization algorithms, and some probabilistic relaxations have
been developed. However, they are not sufficient due to their limitations,
i.e., being weaker than the original k-anonymity or requiring strong parametric
assumptions. First we propose Pk-anonymity, a new probabilistic k-anonymity,
and prove that Pk-anonymity is a mathematical extension of k-anonymity rather
than a relaxation. Furthermore, Pk-anonymity requires no parametric
assumptions. This property has a significant meaning in the viewpoint that it
enables us to compare privacy levels of probabilistic microdata release
algorithms with deterministic ones. Second, we apply Pk-anonymity to the post
randomization method (PRAM), which is an SDC algorithm based on randomization.
PRAM is proven to satisfy Pk-anonymity in a controlled way, i.e, one can
control PRAM's parameter so that Pk-anonymity is satisfied. On the other hand,
PRAM is also known to satisfy -differential privacy, a recent
popular and strong privacy notion. This fact means that our results
significantly enhance PRAM since it implies the satisfaction of both important
notions: k-anonymity and -differential privacy.Comment: 22 pages, 4 figure
Column ratio mapping: a processing technique for atomic resolution high angle annular dark field(HAADF) images
An image processing technique is presented for atomic resolution high-angle annular dark-field (HAADF) images that have been acquired using scanning transmission electron microscopy (STEM). This technique is termed column ratio mapping and involves the automated process of measuring atomic column intensity ratios in high-resolution HAADF images. This technique was developed to provide a fuller analysis of HAADF images than the usual method of drawing single intensity line profiles across a few areas of interest. For instance, column ratio mapping reveals the compositional distribution across the whole HAADF image and allows a statistical analysis and an estimation of errors. This has proven to be a very valuable technique as it can provide a more detailed assessment of the sharpness of interfacial structures from HAADF images. The technique of column ratio mapping is described in terms of a [1 1 0]-oriented zinc-blende structured AlAs/GaAs superlattice using the 1 Å-scale resolution capability of the aberration-corrected SuperSTEM 1 instrument
ショウジョウバエにおける秒単位の周期的な行動の獲得
要約のみTohoku University谷本拓課
Experimental evaluation of interfaces using atomic-resolution high angle annular dark field (HAADF) imaging
Aberration-corrected highangleannulardarkfield (HAADF) imaging in scanning transmission electron microscopy (STEM) can now be performed at atomic-resolution. This is an important tool for the characterisation of the latest semiconductor devices that require individual layers to be grown to an accuracy of a few atomic layers. However, the actual quantification of interfacial sharpness at the atomic-scale can be a complicated matter. For instance, it is not clear how the use of the total, atomic column or background HAADF signals can affect the measured sharpness or individual layer widths. Moreover, a reliable and consistent method of measurement is necessary. To highlight these issues, two types of AlAs/GaAs interfaces were studied in-depth by atomic-resolutionHAADFimaging. A method of analysis was developed in order to map the various HAADF signals across an image and to reliably determine interfacial sharpness. The results demonstrated that the level of perceived interfacial sharpness can vary significantly with specimen thickness and the choice of HAADF signal. Individual layer widths were also shown to have some dependence on the choice of HAADF signal. Hence, it is crucial to have an awareness of which part of the HAADF signal is chosen for analysis along with possible specimen thickness effects for future HAADF studies performed at the scale of a few atomic layers
- …