10 research outputs found

    Poly(silylene)vinylenes from ethynylhydridosilanes

    Get PDF
    Catalytic polymerization of dialkyl-, alkylaryl- or diaryldiethynylhydridosilanes cleanly affords soluble poly(silylene)vinylenes which can be shaped as fibers, films and bulk objects and thermally converted to silicon carbide

    Low temperature joining of ceramic composites

    Get PDF
    A method of joining similar or dissimilar ceramic and ceramic composite materials, such as SiC continuous fiber ceramic composites, at relatively low joining temperatures uses a solventless, three component bonding agent effective to promote mechanical bond toughness and elevated temperature strength to operating temperatures of approximately 1200 degrees C. The bonding agent comprises a preceramic precursor, an aluminum bearing powder, such as aluminum alloy powder, and mixtures of aluminum metal or alloy powders with another powder, and and boron powder in selected proportions. The bonding agent is disposed as an interlayer between similar or dissimilar ceramic or cermaic composite materials to be joined and is heated in ambient air or inert atmosphere to a temperature not exceeding about 1200 degrees C. to form a strong and tough bond joint between the materials. The bond joint produced is characterized by a composite joint microstructure having relatively soft, compliant aluminum bearing particulate regions dispersed in a ceramic matrix

    Low temperature joining of ceramic composites

    Get PDF
    A method of joining similar or dissimilar ceramic and ceramic composite materials, such as SiC continuous fiber ceramic composites, at relatively low joining temperatures uses a solventless, three component bonding agent effective to promote mechanical bond toughness and elevated temperature strength to operating temperatures of approximately 1200 degrees C. The bonding agent comprises a preceramic precursor, an aluminum bearing powder, such as aluminum alloy powder, and mixtures of aluminum metal or alloy powders with another powder, and and boron powder in selected proportions. The bonding agent is disposed as an interlayer between similar or dissimilar ceramic or ceramic composite materials to be joined and is heated in ambient air or inert atmosphere to a temperature not exceeding about 1200 degrees C. to form a strong and tough bond joint between the materials. The bond joint produced is characterized by a composite joint microstructure having relatively soft, compliant aluminum bearing particulate regions dispersed in a ceramic matrix

    Poly(silylene)vinylenes from ethynylhydridosilanes

    No full text
    Catalytic polymerization of dialkyl-, alkylaryl- or diaryldiethynylhydridosilanes cleanly affords soluble poly(silylene)vinylenes which can be shaped as fibers, films and bulk objects and thermally converted to silicon carbide.</p

    Nonlinear optical and conductive polymeric material

    No full text
    A polymeric material which exhibits nonlinear optical properties if undoped and conductive properties if doped. The polymer is prepared by polymerizing diethynylsilane compositions, the resulting polymeric material having a weight average molecular weight between about 20,000 and about 200,000 grams per mole. The polymer is prepared and catalytically polymerized by exposure to a catalyst, such as MoCl.sub.5 or W(CO).sub.6 /hv.</p

    Low temperature joining of ceramic composites

    Get PDF
    A method of joining similar or dissimilar ceramic and ceramic composite materials, such as SiC continuous fiber ceramic composites, at relatively low joining temperatures uses a solventless, three component bonding agent effective to promote mechanical bond toughness and elevated temperature strength to operating temperatures of approximately 1200 degrees C. The bonding agent comprises a preceramic precursor, an aluminum bearing powder, such as aluminum alloy powder, and mixtures of aluminum metal or alloy powders with another powder, and and boron powder in selected proportions. The bonding agent is disposed as an interlayer between similar or dissimilar ceramic or ceramic composite materials to be joined and is heated in ambient air or inert atmosphere to a temperature not exceeding about 1200 degrees C. to form a strong and tough bond joint between the materials. The bond joint produced is characterized by a composite joint microstructure having relatively soft, compliant aluminum bearing particulate regions dispersed in a ceramic matrix.</p

    Low temperature joining of ceramic composites

    No full text
    A method of joining similar or dissimilar ceramic and ceramic composite materials, such as SiC continuous fiber ceramic composites, at relatively low joining temperatures uses a solventless, three component bonding agent effective to promote mechanical bond toughness and elevated temperature strength to operating temperatures of approximately 1200 degrees C. The bonding agent comprises a preceramic precursor, an aluminum bearing powder, such as aluminum alloy powder, and mixtures of aluminum metal or alloy powders with another powder, and and boron powder in selected proportions. The bonding agent is disposed as an interlayer between similar or dissimilar ceramic or cermaic composite materials to be joined and is heated in ambient air or inert atmosphere to a temperature not exceeding about 1200 degrees C. to form a strong and tough bond joint between the materials. The bond joint produced is characterized by a composite joint microstructure having relatively soft, compliant aluminum bearing particulate regions dispersed in a ceramic matrix.</p

    Thermally-Induced 1,2-Shifts To Convert Olefins to Carbenes: Does Silicon Do It? If So, Why Not Carbon?

    Get PDF
    Thermal isomerization of olefins to carbenes via a 1,2-silyl shift was examined by both experiment and theory. No evidence of this rearrangement was found for acyclic vinylsilanes, nor could electronic assistance by silicon be identified in cis, trans isomerizations. Serendipitous synthesis of a 2,4-dimethylene-1,3-disilacyclobutane allowed a kinetic examination of its gas-phase, thermal ring expansion to a 2-methylene-1,3-disilacyclopentene. The Arrhenius parameters (log A = 12.48, Eact = 54.09 kcallmol) are the first to be reported for an olefin-to-carbene rearrangement. The analogous all-carbon system failed to ring expand. Ab initio calculations revealed that this was opposite to any predictions which would be made from ring strain considerations. Calculations showed that for silyl migration the transition state was late and was actually the carbene, while for carbon migration the TS was early and considerably higher in energy than the resulting carbene. The 2-methylene-1-silacyclobutane rearrangement (ref 5) was reexamined to find that reversible ring opening to a 1,4-diradical occurred at temperatures below those required to ring expand via a carbene TS.Reprinted (adapted) with permission from Journal of the American Chemical Society 117 (1995): 11695, doi:10.1021/ja00152a010. Copyright 1995 American Chemical Society.</p
    corecore