32 research outputs found

    Efficacy and safety of micafungin in empiric and D-index-guided early antifungal therapy for febrile neutropenia ; A subgroup analysis of the CEDMIC trial

    Get PDF
    Objectives: The D-index is defined as the area over the neutrophil curve during neutropenia. The CEDMIC trial confirmed the noninferiority of D-index-guided early antifungal therapy (DET) using micafungin to empirical antifungal therapy (EAT). In this study, we evaluated the efficacy and safety of micafungin in these settings. Methods: From the CEDMIC trial, we extracted 67 and 113 patients who received micafungin in the DET and EAT groups, respectively. Treatment success was defined as the fulfilment of all components of a five-part composite end point. Fever resolution was evaluated at seven days after the completion of therapy. Results: The proportion of high-risk treatments including induction chemotherapy for acute leukemia and allogeneic hematopoietic stem cell transplantation was significantly higher in the DET group than in the EAT group (82.1% vs. 52.2%). The efficacy of micafungin was 68.7% (95%CI: 56.2–79.4) and 79.6% (71.0–86.6) in the DET and EAT groups, respectively. When we focused on high-risk treatments, the efficacy was 69.1% (55.2–80.9%) and 78.0% (65.3–87.7%), respectively (P = 0.30). There was no significant difference in any of the 5 components between the two groups. Conclusions: The efficacy of micafungin in patients undergoing high-risk treatment was not strongly impaired in DET compared to that in EAT

    Electrospinning of Block and Graft Type Silicone Modified Polyurethane Nanofibers

    No full text
    Silicone modified polyurethane (PUSX) has attracted interest as a useful material by various properties, which are combined with silicone and polyurethane. In this paper, we tried to optimize the electrospinning process of silicone modified polyurethane (PUSX) nanofibers on a lab scale device and a multinozzle pilot scale set-up to investigate the potential and limitations of preparing PUSX nanofibrous sheets using different equipment. The morphology and diameter of the obtained fibers were studied via scanning electron microscopy (SEM). Attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) was also carried out to analyze the chemical structure of PUSX nanofibers. As a result, we successfully figured out the optimal parameters of PUSX electrospinning process and demonstrated the great potential of the process for mass production of PUSX nanofibrous sheets from solutions

    Physical Properties and In Vitro Biocompatible Evaluation of Silicone-Modified Polyurethane Nanofibers and Films

    No full text
    In this study, the physical properties and the biocompatibility of electrospun silicone-modified polyurethane (PUSX) nanofibers were discussed and compared with PUSX films. To investigate the effects of different structures on the physical properties, tensile strength, elongation at break, Young’s modulus, water retention, water contact angle (WCA) and thermal conductivity measurements were performed. To prove the in vitro biocompatibility of the materials, cell adhesion, cell proliferation, and cytotoxicity were studied by NIH3T3 mouse embryonic fibroblasts cells following by lactate dehydrogenase (LDH) analysis. As a conclusion, the mechanical properties, water retention, and WCA were proven to be able to be controlled and improved by adjusting the structure of PUSX. A higher hydrophobicity and lower thermal conductivity were found in PUSX nanofibers compared with polyurethane (PU) nanofibers and films. An in vitro biocompatibility evaluation shows that the cell proliferation can be performed on both PUSX nanofibers and films. However, within a short period, cells prefer to attach and entangle on PUSX nanofibers rather than PUSX films. PUSX nanofibers were proven to be a nontoxic alternative for PU nano-membranes or films in the biomedical field, because of the controllable physical properties and the biocompatibility

    Analytical performance of a new automated chemiluminescent magnetic immunoassays for soluble PD-1, PD-L1, and CTLA-4 in human plasma

    Get PDF
    Current clinically approved biomarkers for the PD-1 blockade cancer immunotherapy are based entirely on the properties of tumour cells. With increasing awareness of clinical responses, more precise biomarkers for the efficacy are required based on immune properties. In particular, expression levels of immune checkpoint-associated molecules such as PD-1, PD-L1, and CTLA-4 would be critical to evaluate the immune state of individuals. Although quantification of their soluble form leased from the membrane will provide quick evaluation of patients’ immune status, available methods such as enzyme-linked immunosorbent assays to measure these soluble factors have limitations in sensitivity and reproducibility for clinical use. To overcome these problems, we developed a rapid and sensitive immunoassay system based on chemiluminescent magnetic technology. The system is fully automated, providing high reproducibility. Application of this system to plasma of patients with several types of tumours demonstrated that soluble PD-1, PD-L1, and CTLA-4 levels were increased compared to those of healthy controls and varied among tumour types. The sensitivity and detection range were sufficient for evaluating plasma concentrations before and after the surgical ablation of cancers. Therefore, our newly developed system shows potential for accurate detection of soluble PD-1, PD-L1, and CTLA-4 levels in the clinical practice
    corecore