330 research outputs found
Global hybrids from the semiclassical atom theory satisfying the local density linear response
We propose global hybrid approximations of the exchange-correlation (XC)
energy functional which reproduce well the modified fourth-order gradient
expansion of the exchange energy in the semiclassical limit of many-electron
neutral atoms and recover the full local density approximation (LDA) linear
response. These XC functionals represent the hybrid versions of the APBE
functional [Phys. Rev. Lett. 106, 186406, (2011)] yet employing an additional
correlation functional which uses the localization concept of the correlation
energy density to improve the compatibility with the Hartree-Fock exchange as
well as the coupling-constant-resolved XC potential energy. Broad energetical
and structural testings, including thermochemistry and geometry, transition
metal complexes, non-covalent interactions, gold clusters and small
gold-molecule interfaces, as well as an analysis of the hybrid parameters, show
that our construction is quite robust. In particular, our testing shows that
the resulting hybrid, including 20\% of Hartree-Fock exchange and named hAPBE,
performs remarkably well for a broad palette of systems and properties, being
generally better than popular hybrids (PBE0 and B3LYP). Semi-empirical
dispersion corrections are also provided.Comment: 12 pages, 4 figure
Distinct and Shared Roles of β-Arrestin-1 and β-Arrestin-2 on the Regulation of C3a Receptor Signaling in Human Mast Cells
BACKGROUND: The complement component C3a induces degranulation in human mast cells via the activation of cell surface G protein coupled receptors (GPCR; C3aR). For most GPCRs, agonist-induced receptor phosphorylation leads to the recruitment of β-arrestin-1/β-arrestin-2; resulting in receptor desensitization and internalization. Activation of GPCRs also leads to ERK1/2 phosphorylation via two temporally distinct pathways; an early response that reflects G protein activation and a delayed response that is G protein independent but requires β-arrestins. The role of β-arrestins on C3aR activation/regulation in human mast cells, however, remains unknown. METHODOLOGY/PRINCIPAL FINDINGS: We utilized lentivirus short hairpin (sh)RNA to stably knockdown the expression of β-arrestin-1 and β-arrrestin-2 in human mast cell lines, HMC-1 and LAD2 that endogenously expresses C3aR. Silencing β-arrestin-2 attenuated C3aR desensitization, blocked agonist-induced receptor internalization and rendered the cells responsive to C3a for enhanced NF-κB activity as well as chemokine generation. By contrast, silencing β-arrestin-1 had no effect on these responses but resulted in a significant decrease in C3a-induced mast cell degranulation. In shRNA control cells, C3a caused a transient ERK1/2 phosphorylation, which peaked at 5 min but disappeared by 10 min. Knockdown of β-arrestin-1, β-arrestin-2 or both enhanced the early response to C3a and rendered the cells responsive for ERK1/2 phosphorylation at later time points (10-30 min). Treatment of cells with pertussis toxin almost completely blocked both early and delayed C3a-induced ERK1/2 phosphorylation in β-arrestin1/2 knockdown cells. CONCLUSION/SIGNIFICANCE: This study demonstrates distinct roles for β-arrestins-1 and β-arrestins-2 on C3aR desensitization, internalization, degranulation, NF-κB activation and chemokine generation in human mast cells. It also shows that both β-arrestin-1 and β-arrestin-2 play a novel and shared role in inhibiting G protein-dependent ERK1/2 phosphorylation. These findings reveal a new level of complexity for C3aR regulation by β-arrestins in human mast cells
Optoelectronic Properties of Carbon Nanorings: Excitonic Effects from Time-Dependent Density Functional Theory
The electronic structure and size-scaling of optoelectronic properties in
cycloparaphenylene carbon nanorings are investigated using time-dependent
density functional theory (TDDFT). The TDDFT calculations on these molecular
nanostructures indicate that the lowest excitation energy surprisingly becomes
larger as the carbon nanoring size is increased, in contradiction with typical
quantum confinement effects. In order to understand their unusual electronic
properties, I performed an extensive investigation of excitonic effects by
analyzing electron-hole transition density matrices and exciton binding
energies as a function of size in these nanoring systems. The transition
density matrices allow a global view of electronic coherence during an
electronic excitation, and the exciton binding energies give a quantitative
measure of electron-hole interaction energies in the nanorings. Based on
overall trends in exciton binding energies and their spatial delocalization, I
find that excitonic effects play a vital role in understanding the unique
photoinduced dynamics in these carbon nanoring systems.Comment: Accepted by the Journal of Physical Chemistry
Effects of cigarette smoke on degranulation and NO production by mast cells and epithelial cells
Exhaled nitric oxide (eNO) is decreased by cigarette smoking. The hypothesis that oxides of nitrogen (NO(X)) in cigarette smoke solution (CSS) may exert a negative feedback mechanism upon NO release from epithelial (AEC, A549, and NHTBE) and basophilic cells (RBL-2H3) was tested in vitro. CSS inhibited both NO production and degranulation (measured as release of beta-hexosaminidase) in a dose-dependent manner from RBL-2H3 cells. Inhibition of NO production by CSS in AEC, A549, and NHTBE cells was also dose-dependent. In addition, CSS decreased expression of NOS mRNA and protein expression. The addition of NO inhibitors and scavengers did not, however, reverse the effects of CSS, nor did a NO donor (SNP) or nicotine mimic CSS. N-acetyl-cysteine, partially reversed the inhibition of beta-hexosaminidase release suggesting CSS may act via oxidative free radicals. Thus, some of the inhibitory effects of CSS appear to be via oxidative free radicals rather than a NO(X )-related negative feedback
Paracrine IL-33 Stimulation Enhances Lipopolysaccharide-Mediated Macrophage Activation
BACKGROUND: IL-33, a member of the IL-1 family of cytokines, provokes Th2-type inflammation accompanied by accumulation of eosinophils through IL-33R, which consists of ST2 and IL-1RAcP. We previously demonstrated that macrophages produce IL-33 in response to LPS. Some immune responses were shown to differ between ST2-deficient mice and soluble ST2-Fc fusion protein-treated mice. Even in anti-ST2 antibody (Ab)-treated mice, the phenotypes differed between distinct Ab clones, because the characterization of such Abs (i.e., depletion, agonistic or blocking Abs) was unclear in some cases. METHODOLOGY/PRINCIPAL FINDINGS: To elucidate the precise role of IL-33, we newly generated neutralizing monoclonal Abs for IL-33. Exogenous IL-33 potentiated LPS-mediated cytokine production by macrophages. That LPS-mediated cytokine production by macrophages was suppressed by inhibition of endogenous IL-33 by the anti-IL-33 neutralizing mAbs. CONCLUSIONS/SIGNIFICANCE: Our findings suggest that LPS-mediated macrophage activation is accelerated by macrophage-derived paracrine IL-33 stimulation
IL-33 Is Produced by Mast Cells and Regulates IgE-Dependent Inflammation
Background: IL-33 is a recently characterized IL-1 family cytokine and found to be expressed in inflammatory diseases, including severe asthma and inflammatory bowl disease. Recombinant IL-33 has been shown to enhance Th2-associated immune responses and potently increase mast cell proliferation and cytokine production. While IL-33 is constitutively expressed in endothelial and epithelial cells, where it may function as a transcriptional regulator, cellular sources of IL-33 and its role in inflammation remain unclear. Methodology/Principal Findings: Here, we identify mast cells as IL-33 producing cells. IgE/antigen activation of bone marrow-derived mast cells or a murine mast cell line (MC/9) significantly enhanced IL-33. Conversely, recombinant IL-33 directly activated mast cells to produce several cytokines including IL-4, IL-5 and IL-6 but not IL-33. We show that expression of IL-33 in response to IgE-activation required calcium and that ionomycin was sufficient to induce IL-33. In vivo, peritoneal mast cells expressed IL-33 and IL-33 levels were significantly lower within the skin of mast cell deficient mice, compared to littermate controls. Local activation of mast cells promotes edema, followed by the recruitment of inflammatory cells. We demonstrate using passive cutaneous anaphylaxis, a mast cell-dependent model, that deficiency in ST2 or antibody blockage of ST2 or IL-33 ablated the late phase inflammatory response but that the immediate phase response was unaffected. IL-33 levels in the skin were significantly elevated only during the late phase
Long-range corrected DFT calculations of charge-transfer integrals in model metal-free phthalocyanine complexes
An assessment of several widely used exchange--correlation potentials in computing charge-transfer integrals is performed. In particular, we employ the recently proposed Coulomb-attenuated model which was proven by other authors to improve upon conventional functionals in the case of charge-transfer excitations. For further validation, two distinct approaches to compute the property in question are compared for a phthalocyanine dimer
Modeling adsorption in metal-organic frameworks with open metal sites : propane/propylene separations
We present a new approach for modeling adsorption in metal-organic frameworks (MOFs) with unsaturated metal centers and apply it to the challenging propane/propylene separation in copper(II) benzene-1,3,5-tricarboxylate (CuBTC). We obtain information about the specific interactions between olefins and the open metal sites of the MOP using quantum mechanical density functional theory. A proper consideration of all the relevant contributions to the adsorption energy enables us to extract the component that is due to specific attractive interactions between the pi-orbitals of the alkene and the coordinatively unsaturated metal. This component is fitted using a combination of a Morse potential and a power law function and is then included into classical grand canonical Monte Carlo simulations of adsorption. Using this modified potential model, together with a standard Lennard-Jones model, we are able to predict the adsorption of not only propane (where no specific interactions are present), but also of propylene (where specific interactions are dominant). Binary adsorption isotherms for this mixture are in reasonable agreement with ideal adsorbed solution theory predictions. We compare our approach with previous attempts to predict adsorption in MOFs with open metal sites and suggest possible future routes for improving our model
- …