4,492 research outputs found
Tracking of magnetic flux concentrations over a five-day observation and an insight into surface magnetic flux transport
The solar dynamo problem is the question of how the cyclic variation in the
solar magnetic field is maintained. One of the important processes is the
transport of magnetic flux by surface convection. To reveal this process, the
dependence of the squared displacement of magnetic flux concentrations upon the
elapsed time is investigated in this paper via a feature-recognition technique
and a continual five-day magnetogram. This represents the longest time scale
over which a satellite observation has ever been performed for this problem.
The dependence is found to follow a power-law and differ significantly from
that of diffusion transport. Furthermore there is a change in the behavior at a
spatial scale of 10^{3.8} km. A super-diffusion behavior with an index of 1.4
is found on smaller scales, while changing to a sub-diffusion behavior with an
index of 0.6 on larger ones. I interpret this difference in the transport
regime as coming from the network-flow pattern.Comment: 18 pages, 9 figures, accepted for publication in the Journal of Space
Weather and Space Climate (SWSC
Detection of flux emergence, splitting, merging, and cancellation of network field. I Splitting and Merging
Frequencies of magnetic patch processes on supergranule boundary, namely flux
emergence, splitting, merging, and cancellation, are investigated through an
automatic detection. We use a set of line of sight magnetograms taken by the
Solar Optical Telescope (SOT) on board Hinode satellite. We found 1636 positive
patches and 1637 negative patches in the data set, whose time duration is 3.5
hours and field of view is 112" \times 112". Total numbers of magnetic
processes are followed: 493 positive and 482 negative splittings, 536 positive
and 535 negative mergings, 86 cancellations, and 3 emergences. Total numbers of
emergence and cancellation are significantly smaller than those of splitting
and merging. Further, frequency dependences of merging and splitting processes
on flux content are investigated. Merging has a weak dependence on flux content
only with a power- law index of 0.28. Timescale for splitting is found to be
independent of parent flux content before splitting, which corresponds to \sim
33 minutes. It is also found that patches split into any flux contents with a
same probability. This splitting has a power-law distribution of flux content
with an index of -2 as a time independent solution. These results support that
the frequency distribution of flux content in the analyzed flux range is
rapidly maintained by merging and splitting, namely surface processes. We
suggest a model for frequency distributions of cancellation and emergence based
on this idea.Comment: 32 pages, 10 figures, 1 table, accepted to Ap
Surface damage resulting from rolling contact operating in magnetic field
This paper describes the effects of magnetic field in rolling contact tests of steel by using a two-disc configuration and the investigation of mechanisms involved.
Two contact conditions, namely pure rolling and rolling with 10% sliding were used together with 0.4 and 1.1 Tesla horizontal static magnetic fields created by permanent magnets. Results of optical and scanning electron microscope observations point out that finer wear particles and smoother worn surfaces are produced in the presence of a magnetic field. It is proposed that finer wear particles result from the movement of subsurface crack initiation towards the surface due to the action of magnetic field
Single domain YBCO/Ag bulk superconductors fabricated by seeded infiltration and growth
We have applied the seeded infiltration and growth (IG) technique to the processing of samples containing Ag in an attempt to fabricate Ag-doped Y-Ba-Cu-O (YBCO) bulk superconductors with enhanced mechanical properties. The IG technique has been used successfully to grow bulk Ag-doped YBCO superconductors of up to 25 mm in diameter in the form of single grains. The distribution of Ag in the parent Y-123 matrix fabricated by the IG technique is observed to be at least as uniform as that in samples grown by conventional top seeded melt growth (TSMG). Fine Y-211 particles were observed to be embedded within the Y-123 matrix for the IG processed samples, leading to a high critical current density, Jc, of over 70 kA/cm2 at 77.3 K in self-field. The distribution of Y-211 in the IG sample microstructure, however, is inhomogeneous, which leads to a variation in the spatial distribution of Jc throughout the bulk matrix. A maximum-trapped field of around 0.43 T at 1.2 mm above the sample surface (i.e. including 0.7 mm for the sensor mould thickness) is observed at liquid nitrogen temperature, despite the relatively small grain size of the sample (20 mm diameter × 7 mm thickness)
Growth rate and superconducting properties of Gd-Ba-Cu-O bulk superconductors melt processed in air
A generic Mg-doped Nd-Ba-Cu-O seed crystal has been developed recently for the fabrication of any type of rare earth (RE) based (RE)-Ba-Cu-O single grain bulk superconductor in air. The new generic seed simplifies significantly the top seeded melt growth (TSMG) process for light rare earth based (Nd, Sm, Gd, or mixed rare earth elements) bulk superconductors, in particular. GdBCO single grains have been fabricated successfully in air using the new seed in a cold-seeding process. In this study, precursor powders were enriched with different amounts of BaO2 to investigate the extent of substitution of Gd for Ba in the Gd1+xBa2-xCu3O7-delta solid solution phase. The growth process of large single grains in air was investigated at various growth temperatures under isothermal processing conditions. Crystal growth rate as a function of under-cooling and BaO2 content has been determined from these experiments. The spatial variation of Tc and transition temperature width for applied field aligned along the a/b and c-axis of grains fabricated with different BaO2 content has also been investigated in order to understand the extent of the formation of Gd/Ba solid solution with varying growth temperature and precursor composition. These results have been used to establish the optimum conditions for fabricating solid solution-free, large single grains of GdBCO in air
- …