212 research outputs found

    1-Year Results of the ZEPHYR Registry (Zilver PTX for the Femoral Artery and Proximal Popliteal Artery) Predictors of Restenosis

    Get PDF
    AbstractObjectivesThis study sought to assess the rate and predictors of 1-year restenosis after drug-eluting stent implantation for femoropopliteal (FP) lesions in patients with peripheral arterial disease.BackgroundZilver PTX, a paclitaxel-eluting stent for FP lesions, provides superior outcomes to angioplasty and bare-metal stents in clinical trials. However, its real-world outcomes and the associated features remain unclear.MethodsThis was a prospective multicenter study enrolling 831 FP lesions (797 limbs, 690 patients) treated by Zilver PTX implantation. The primary endpoint was 1-year restenosis. Secondary endpoints included major adverse limb event and stent thrombosis.ResultsMean lesion length was 17 ± 10 cm. One-year restenosis, major adverse limb event, and stent thrombosis rates were 37%, 22%, and 2%, respectively. The generalized linear mixed model showed that lesion length ≥16 cm assessed by angiography and distal external elastic membrane area ≤27 mm2 and minimum stent area ≤12 mm2 assessed by intravascular ultrasound were independent risk factors for restenosis. One-year restenosis rates were 15% in cases with none of these risk factors and 50% in those with ≥2 risk factors.ConclusionsThe current study demonstrated 1-year real-world outcomes after drug-eluting stent treatment for FP lesions, including challenging ones in clinical practice. Lesion length, external elastic membrane area, and minimum stent area were independent predictors for restenosis. (Zilver PTX for the Femoral Artery and Proximal Popliteal Artery—Prospective Multicenter Registry [ZEPHYR]; UMIN000008433

    LPS-CXCL10 Predicts Responses to Bortezomib in Myeloma Patients

    Get PDF
    To identify predictive biomarkers for clinical responses to bortezomib treatment, 0.06 mL of each whole blood without any cell separation procedures was stimulated ex vivo using five agents, and eight mRNAs were quantified. In six centers, heparinized peripheral blood was prospectively obtained from 80 previously treated or untreated, symptomatic multiple myeloma (MM) patients with measurable levels of M-proteins. The blood sample was procured prior to treatment as well as 2-3 days and 1-3 weeks after the first dose of bortezomib, which was intravenously administered biweekly or weekly, during the first cycle. Six stimulant-mRNA combinations; that is, lipopolysaccharide (LPS)-granulocyte-macrophage colony-stimulating factor (GM-CSF), LPS-CXCL chemokine 10 (CXCL10), LPS-CCL chemokine 4 (CCL4), phytohemagglutinin-CCL4, zymosan A (ZA)-GMCSF and ZA-CCL4 showed significantly higher induction in the complete and very good partial response group than in the stable and progressive disease group, as determined by both parametric (t-test) and non-parametric (unpaired Mann-Whitney test) tests. Moreover, LPS-induced CXCL10 mRNA expression was significantly suppressed 2-3 days after the first dose of bortezomib in all patients, as determined by both parametric (t-test) and non-parametric (paired Wilcoxon test) tests, whereas the complete and very good partial response group showed sustained suppression 1-3 weeks after the first dose. Thus, pretreatment LPS-CXCL10 mRNA and/or the six combinations may serve as potential biomarkers for the response to bortezomib treatment in MM patients

    Spin-gap formation due to spin-Peierls instability in π-orbital-ordered NaO2

    Get PDF
    We have investigated the low-temperature magnetism of sodium superoxide (NaO2), in which spin, orbital, and lattice degrees of freedom are closely entangled. The magnetic susceptibility shows anomalies at T1 = 220 K and T2 = 190 K, which correspond well to the structural phase transition temperatures, and a sudden decrease below T3 = 34 K. At 4.2 K, the magnetization shows a clear stepwise anomaly around 30 T with a large hysteresis. In addition, the muon spin relaxation experiments indicate no magnetic phase transition down to T = 0.3 K. The inelastic neutron scattering spectrum exhibits magnetic excitation with a finite energy gap. These results confirm that the ground state of NaO2 is a spin-singlet state. To understand this ground state in NaO2, we performed Raman scattering experiments. All the Raman-active libration modes expected for the marcasite phase below T2 are observed. Furthermore, we find that several new peaks appear below T3. This directly evidences the low crystal symmetry, namely, the presence of the phase transition at T3.We conclude that the singlet ground state of NaO2 is due to the spin-Peierls instability

    Alternative Translocation Breakpoint Cluster Region 5' to BCL-6 in B-cell Non-Hodgkin’s Lymphoma

    Get PDF
    Chromosomal translocations involving band 3q27 with various different partner chromosomes represent a recurrent cytogenetic abnormality in B-cell non-Hodgkin’s lymphoma. In a fraction of these translocations, the chromosomal breakpoint is located within the 5' noncoding region of the BCL-6 proto-oncogene where the BCL-6 major breakpoint region (MBR) maps. As a result of the translocation, BCL-6 expression is deregulated by promoter substitution. However, between 30 and 50% of lymphomas with cytogenetically detectable translocations affecting band 3q27 retain a germ-line configuration at the BCL-6 locus. To identify possible additional breakpoint clusters within 3q27, we cloned a t(3;14)(q27;q32) lymphoma without MBR rearrangement and found a novel breakpoint site located between 245 and 285 kb 5' to BCL-6. Breakpoints within this newly described region, which we called the alternative breakpoint region (ABR), were found to be recurrent in lymphomas carrying t(3q27) chromosomal translocations but devoid of BCL-6 MBR rearrangements. Comparative analysis of multiple lymphomas carrying rearrangements within the ABR showed that the breakpoints cluster within a 20-kb distance. Translocations involving the ABR may juxtapose BCL-6 to distantly acting, heterologous transcriptional regulatory elements which cause deregulation of the proto-oncogene. The identification of BCL-6 ABR provides new tools for the diagnosis of lymphomas carrying aberrations at 3q27 and deregulated BCL-6 genes

    Alternative Translocation Breakpoint Cluster Region 5' to BCL-6 in B-cell Non-Hodgkin’s Lymphoma

    Get PDF
    Chromosomal translocations involving band 3q27 with various different partner chromosomes represent a recurrent cytogenetic abnormality in B-cell non-Hodgkin’s lymphoma. In a fraction of these translocations, the chromosomal breakpoint is located within the 5' noncoding region of the BCL-6 proto-oncogene where the BCL-6 major breakpoint region (MBR) maps. As a result of the translocation, BCL-6 expression is deregulated by promoter substitution. However, between 30 and 50% of lymphomas with cytogenetically detectable translocations affecting band 3q27 retain a germ-line configuration at the BCL-6 locus. To identify possible additional breakpoint clusters within 3q27, we cloned a t(3;14)(q27;q32) lymphoma without MBR rearrangement and found a novel breakpoint site located between 245 and 285 kb 5' to BCL-6. Breakpoints within this newly described region, which we called the alternative breakpoint region (ABR), were found to be recurrent in lymphomas carrying t(3q27) chromosomal translocations but devoid of BCL-6 MBR rearrangements. Comparative analysis of multiple lymphomas carrying rearrangements within the ABR showed that the breakpoints cluster within a 20-kb distance. Translocations involving the ABR may juxtapose BCL-6 to distantly acting, heterologous transcriptional regulatory elements which cause deregulation of the proto-oncogene. The identification of BCL-6 ABR provides new tools for the diagnosis of lymphomas carrying aberrations at 3q27 and deregulated BCL-6 genes

    Improved clonality detection in B-cell lymphoma using a semi-nested modification of the BIOMED-2 PCR assay for IGH rearrangement: A paraffin-embedded tissue study

    Get PDF
    The BIOMED-2 PCR protocol for targeting the IGH gene is widely employed for detecting clonality in B-cell malignancies. Unfortunately, the detection of clonality with this method is not very sensitive when paraffin sections are used as a DNA source. To increase the sensitivity, we devised a semi-nested modification of a JH consensus primer. The clonality detection rates of three assays were compared: the standard BIOMED-2, BIOMED-2 assay followed by BIOMED-2 re-amplification, and BIOMED-2 assay followed by semi-nested BIOMED-2. We tested more than 100 cases using paraffin-embedded tissues of various B-cell lymphomas, and found that the clonality detection rates with the above three assays were 63.9%, 79.6%, and 88.0%, respectively. While BIOMED-2 re-amplification was significantly more sensitive than the standard BIOMED-2, the semi-nested BIOMED-2 was significantly more sensitive than both the standard BIOMED-2 and BIOMED-2 re-amplification. An increase in sensitivity was observed in all lymphoma subtypes examined. In conclusion, tumor clonality may be detected in nearly 90% of B-cell lymphoma cases with semi-nested BIOMED-2. This ancillary assay may be useful when the standard BIOMED-2 fails to detect clonality in histopathologically suspected B-cell lymphomas

    Changing trends in prognostic factors for patients with multiple myeloma after autologous stem cell transplantation during the immunomodulator drug/proteasome inhibitor era

    Get PDF
    We evaluated the clinical significance of prognostic factors including the International Staging System (ISS) and modified European Group for Blood and Marrow Transplantation response criteria in 1650 Japanese patients with multiple myeloma (MM) who underwent upfront single autologous stem cell transplantation (ASCT). We categorized patients into two treatment cohorts: pre-novel agent era (1995-2006) and novel agent era (2008-2011). The combined percentage of pre-ASCT complete response and very good partial response cases (463 of 988, 47%) significantly increased during the novel agent era compared with the pre-novel agent era (164 of 527, 31%; P < 0.0001). The 2-year overall survival (OS) rate of 87% during the novel agent era was a significant improvement relative to that of 82% during the pre-novel agent era (P = 0.019). Although significant differences in OS were found among ISS stages during the pre-novel agent era, no significant difference was observed between ISS I and II (P = 0.107) during the novel agent era. The factors independently associated with a superior OS were female gender (P = 0.002), a good performance status (P = 0.024), lower ISS (P < 0.001), pre-ASCT response at least partial response (P < 0.001) and ASCT during the novel agent era (P = 0.017). These results indicate that the response rate and OS were significantly improved, and the ISS could not clearly stratify the prognoses of Japanese patients with MM who underwent upfront single ASCT during the novel agent era. © 2014 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association

    Bortezomib Reduces the Tumorigenicity of Multiple Myeloma via Downregulation of Upregulated Targets in Clonogenic Side Population Cells

    Get PDF
    Side population (SP) cells in cancers, including multiple myeloma, exhibit tumor-initiating characteristics. In the present study, we isolated SP cells from human myeloma cell lines and primary tumors to detect potential therapeutic targets specifically expressed in SP cells. We found that SP cells from myeloma cell lines (RPMI 8226, AMO1, KMS-12-BM, KMS-11) express CD138 and that non-SP cells include a CD138-negative population. Serial transplantation of SP and non-SP cells into NOD/Shi-scid IL-2 gamma nul mice revealed that clonogenic myeloma SP cells are highly tumorigenic and possess a capacity for self-renewal. Gene expression analysis showed that SP cells from five MM cell lines (RPMI 8226, AMO1, KMS-12-BM, KMS-11, JJN3) express genes involved in the cell cycle and mitosis (e. g., CCNB1, CDC25C, CDC2, BIRC5, CENPE, SKA1, AURKB, KIFs, TOP2A, ASPM), polycomb (e. g., EZH2, EPC1) and ubiquitin-proteasome (e. g., UBE2D3, UBE3C, PSMA5) more strongly than do non-SP cells. Moreover, CCNB1, AURKB, EZH2 and PSMA5 were also upregulated in the SPs from eight primary myeloma samples. On that basis, we used an aurora kinase inhibitor (VX-680) and a proteasome inhibitor (bortezomib) with RPMI 8226 and AMO1 cells to determine whether these agents could be used to selectively target the myeloma SP. We found that both these drugs reduced the SP fraction, though bortezomib did so more effectively than VX-680 due to its ability to reduce levels of both phospho-histone H3 (p-hist. H3) and EZH2; VX-680 reduced only p-hist. H3. This is the first report to show that certain oncogenes are specifically expressed in the myeloma SP, and that bortezomib effectively downregulates expression of their products. Our approach may be useful for screening new agents with which to target a cell population possessing strong tumor initiating potential in multiple myeloma
    corecore