66 research outputs found

    Establishment of a novel mouse xenograft model of human uterine leiomyoma

    Get PDF
    Uterine leiomyoma is the most common benign tumour in women, and an appropriate animal model for leiomyoma would be useful for exploring new therapeutic strategies. Therefore, we have been challenged to develop a new simple mouse model for human leiomyoma. Leiomyoma tissues were harvested from myomas resected by different surgical procedures with or without gonadotropin-releasing hormone agonist (GnRHa) treatment and were subcutaneously implanted into BALB/c nude mice with an estradiol/progesterone-releasing pellet. The implanted leiomyoma tissues that were obtained from the marginal site of large myomas resected by abdominal myomectomy with GnRHa treatment exhibited sufficient tumour growth in the transplanted mice. The leiomyomas that were treated with GnRHa highly expressed the estrogen/progesterone receptor genes, insulin-like growth factor 2 (IGF2) and embryonic smooth muscle myosin heavy chain (SMemb), which suggests that these factors are critical in the establishment of a mouse model of growing leiomyoma. As a result, this model will be useful for the development of new therapeutic strategies

    Prevalence, reasons, and timing of decisions to withhold/withdraw life-sustaining therapy for out-of-hospital cardiac arrest patients with extracorporeal cardiopulmonary resuscitation

    Get PDF
    Background Extracorporeal cardiopulmonary resuscitation (ECPR) is rapidly becoming a common treatment strategy for patients with refractory cardiac arrest. Despite its benefits, ECPR raises a variety of ethical concerns when the treatment is discontinued. There is little information about the decision to withhold/withdraw life-sustaining therapy (WLST) for out-of-hospital cardiac arrest (OHCA) patients after ECPR. Methods We conducted a secondary analysis of data from the SAVE-J II study, a retrospective, multicenter study of ECPR in Japan. Adult patients who underwent ECPR for OHCA with medical causes were included. The prevalence, reasons, and timing of WLST decisions were recorded. Outcomes of patients with or without WLST decisions were compared. Further, factors associated with WLST decisions were examined. Results We included 1660 patients in the analysis; 510 (30.7%) had WLST decisions. The number of WLST decisions was the highest on the first day and WSLT decisions were made a median of two days after ICU admission. Reasons for WLST were perceived unfavorable neurological prognosis (300/510 [58.8%]), perceived unfavorable cardiac/pulmonary prognosis (105/510 [20.5%]), inability to maintain extracorporeal cardiopulmonary support (71/510 [13.9%]), complications (10/510 [1.9%]), exacerbation of comorbidity before cardiac arrest (7/510 [1.3%]), and others. Patients with WLST had lower 30-day survival (WLST vs. no-WLST: 36/506 [7.1%] vs. 386/1140 [33.8%], p ConclusionFor approximately one-third of ECPR/OHCA patients, WLST was decided during admission, mainly because of perceived unfavorable neurological prognoses. Decisions and neurological assessments for ECPR/OHCA patients need further analysis

    Role of host tissues for sustained humoral effects after endothelial progenitor cell transplantation into the ischemic heart

    Get PDF
    Noncellular differentiation effects have emerged as important mechanisms mediating therapeutic effects of stem or progenitor cell transplantation. Here, we investigated the expression patterns and sources of humoral factors and their regional and systemic biological effects after bone marrow (BM)-derived endothelial progenitor cell (EPC) transplantation into ischemic myocardium. Although most of the transplanted EPCs disappeared within a week, up-regulation of multiple humoral factors was sustained for longer than two weeks, which correlated well with the recovery of cardiac function. To determine the source of the humoral factors, we injected human EPCs into immunodeficient mice. Whereas the expression of human EPC (donor)-derived cytokines rapidly decreased to a nondetectable level within a week, up-regulation of mouse (recipient)-derived cytokines, including factors that could mobilize BM cells, was sustained. Histologically, we observed higher capillary density, a higher proliferation of myocardial cells, a lower cardiomyocyte apoptosis, and reduced infarct size. Furthermore, after EPC transplantation, BM-derived stem or progenitor cells were increased in the peripheral circulation and incorporated into the site of neovascularization and myocardial repair. These data indicate that myocardial EPC transplantation induces humoral effects, which are sustained by host tissues and play a crucial role in repairing myocardial injury

    Improved Culture-Based Isolation of Differentiating Endothelial Progenitor Cells from Mouse Bone Marrow Mononuclear Cells

    Get PDF
    Numerous endothelial progenitor cell (EPC)-related investigations have been performed in mouse experiments. However, defined characteristics of mouse cultured EPC have not been examined. We focused on fast versus slow adherent cell population in bone marrow mononuclear cells (BMMNCs) in culture and examined their characteristics. After 24 h-culture of BMMNCs, attached (AT) cells and floating (FL) cells were further cultured in endothelial differentiation medium separately. Immunological and molecular analyses exhibited more endothelial-like and less monocyte/macrophage-like characteristics in FL cells compared with AT cells. FL cells formed thick/stable tube and hypoxia or shear stress overload further enhanced these endothelial-like features with increased angiogenic cytokine/growth factor mRNA expressions. Finally, FL cells exhibited therapeutic potential in a mouse myocardial infarction model showing the specific local recruitment to ischemic border zone and tissue preservation. These findings suggest that slow adherent (FL) but not fast attached (AT) BMMNCs in culture are EPC-rich population in mouse

    Hedgehog Promotes Neovascularization in Pancreatic Cancers by Regulating Ang-1 and IGF-1 Expression in Bone-Marrow Derived Pro-Angiogenic Cells

    Get PDF
    http://creativecommons.org/licenses/by/2.0/ PublisherBackground: The hedgehog (Hh) pathway has been implicated in the pathogenesis of cancer including pancreatic ductal adenocarcinoma (PDAC). Recent studies have suggested that the oncogenic function of Hh in PDAC involves signaling in the stromal cells rather than cell autonomous effects on the tumor cells. However, the origin and nature of the stromal cell type(s) that are responsive to Hh signaling remained unknown. Since Hh signaling plays a crucial role during embryonic and postnatal vasculogenesis, we speculated that Hh ligand may act on tumor vasculature specifically focusing on bone marrow (BM)-derived cells. Methodology/Principal Findings: Cyclopamine was utilized to inhibit the Hh pathway in human PDAC cell lines and their xenografts. BM transplants, co-culture systems of tumor cells and BM-derived pro-angiogenic cells (BMPCs) were employed to assess the role of tumor-derived Hh in regulating the BM compartment and the contribution of BM-derived cells to angiogenesis in PDAC. Cyclopamine administration attenuated Hh signaling in the stroma rather than in the cancer cells as reflected by decreased expression of full length Gli2 protein and Gli1 mRNA specifically in the compartment. Cyclopamine inhibited the growth of PDAC xenografts in association with regression of the tumor vasculature and reduced homing of BM-derived cells to the tumor. Host-derived Ang-1 and IGF-1 mRNA levels were downregulated by cyclopamine in the tumor xenografts. In vitro co-culture and matrigel plug assays demonstrated that PDAC cell-derived Shh induced Ang-1 and IGF-1 production in BMPCs, resulting in their enhanced migration and capillary morphogenesis activity. Conclusions/Significance: We identified the BMPCs as alternative stromal targets of Hh-ligand in PDAC suggesting that the tumor vasculature is an attractive therapeutic target of Hh blockade. Our data is consistent with the emerging concept that BM-derived cells make important contributions to epithelial tumorigenesis

    Functional disruption of α4 integrin mobilizes bone marrow–derived endothelial progenitors and augments ischemic neovascularization

    Get PDF
    The cell surface receptor α4 integrin plays a critical role in the homing, engraftment, and maintenance of hematopoietic progenitor cells (HPCs) in the bone marrow (BM). Down-regulation or functional blockade of α4 integrin or its ligand vascular cell adhesion molecule-1 mobilizes long-term HPCs. We investigated the role of α4 integrin in the mobilization and homing of BM endothelial progenitor cells (EPCs). EPCs with endothelial colony-forming activity in the BM are exclusively α4 integrin–expressing cells. In vivo, a single dose of anti–α4 integrin antibody resulted in increased circulating EPC counts for 3 d. In hindlimb ischemia and myocardial infarction, systemically administered anti–α4 integrin antibody increased recruitment and incorporation of BM EPCs in newly formed vasculature and improved functional blood flow recovery and tissue preservation. Interestingly, BM EPCs that had been preblocked with anti–α4 integrin ex vivo or collected from α4 integrin–deficient mice incorporated as well as control cells into the neovasculature in ischemic sites, suggesting that α4 integrin may be dispensable or play a redundant role in EPC homing to ischemic tissue. These data indicate that functional disruption of α4 integrin may represent a potential angiogenic therapy for ischemic disease by increasing the available circulating supply of EPCs

    Cilostazol Activates Function of Bone Marrow-Derived Endothelial Progenitor Cell for Re-endothelialization in a Carotid Balloon Injury Model

    Get PDF
    BACKGROUND: Cilostazol(CLZ) has been used as a vasodilating anti-platelet drug clinically and demonstrated to inhibit proliferation of smooth muscle cells and effect on endothelial cells. However, the effect of CLZ on re-endothelialization including bone marrow (BM)-derived endothelial progenitor cell (EPC) contribution is unclear. We have investigated the hypothesis that CLZ might accelerate re-endothelialization with EPCs. METHODOLOGY/PRINCIPAL FINDINGS: Balloon carotid denudation was performed in male Sprague-Dawley rats. CLZ group was given CLZ mixed feed from 2 weeks before carotid injury. Control group was fed normal diet. CLZ accelerated re-endothelialization at 2 weeks after surgery and resulted in a significant reduction of neointima formation 4 weeks after surgery compared with that in control group. CLZ also increased the number of circulating EPCs throughout the time course. We examined the contribution of BM-derived EPCs to re-endothelialization by BM transplantation from Tie2/lacZ mice to nude rats. The number of Tie2-regulated X-gal positive cells on injured arterial luminal surface was increased at 2 weeks after surgery in CLZ group compared with that in control group. In vitro, CLZ enhanced proliferation, adhesion and migration activity, and differentiation with mRNA upregulation of adhesion molecule integrin αvβ3, chemokine receptor CXCR4 and growth factor VEGF assessed by real-time RT-PCR in rat BM-derived cultured EPCs. In addition, CLZ markedly increased the expression of SDF-1α that is a ligand of CXCR4 receptor in EPCs, in the media following vascular injury. CONCLUSIONS/SIGNIFICANCE: CLZ promotes EPC mobilization from BM and EPC recruitment to sites of arterial injury, and thereby inhibited neointima formation with acceleration of re-endothelialization with EPCs as well as pre-existing endothelial cells in a rat carotid balloon injury model. CLZ could be not only an anti-platelet agent but also a promising tool for endothelial regeneration, which is a key event for preventing atherosclerosis or restenosis after vascular intervention

    Zinc homeostasis and signaling in health and diseases: Zinc signaling

    Get PDF
    The essential trace element zinc (Zn) is widely required in cellular functions, and abnormal Zn homeostasis causes a variety of health problems that include growth retardation, immunodeficiency, hypogonadism, and neuronal and sensory dysfunctions. Zn homeostasis is regulated through Zn transporters, permeable channels, and metallothioneins. Recent studies highlight Zn’s dynamic activity and its role as a signaling mediator. Zn acts as an intracellular signaling molecule, capable of communicating between cells, converting extracellular stimuli to intracellular signals, and controlling intracellular events. We have proposed that intracellular Zn signaling falls into two classes, early and late Zn signaling. This review addresses recent findings regarding Zn signaling and its role in physiological processes and pathogenesis
    corecore